Selected simulations for XFEL photo injector

Slides:



Advertisements
Similar presentations
RF-Gun beam based alignment at PITZ/FLASH
Advertisements

1 Bates XFEL Linac and Bunch Compressor Dynamics 1. Linac Layout and General Beam Parameter 2. Bunch Compressor –System Details (RF, Magnet Chicane) –Linear.
Diagnostics and commissioning on ERLP Yuri Saveliev ASTeC CONFORM Project: EMMA Design Review Workshop February 2007, Daresbury Laboratory.
First operation of the TTF2 injector with beam Jean-Paul Carneiro DESY Hamburg TESLA COLLABORATION MEETING DESY Hamburg, 16 Sept 2003.
Reduced Gun Simulations 1. Comparison 60MV/m Gun vs 50MV/m Gun, Flat Top Laser Pulse 2. Comparison for the worst case: Gun50+Gauss Laser Pulse 3. Summary.
CALCULATIONS OF THE LCLS INJECTOR USING ASTRA Jean-Paul Carneiro DESY Hamburg ICFA Future Light Sources Sub-Panel Mini Workshop on Start-to-End Simulations.
Latest results from the upgraded PITZ facility Chase Boulware, DESY, Zeuthen, Germany, for the PITZ collaboration cathode laser conditioning test stand.
C.Limborg-Deprey ERL Workshop, Jefferson March 20th 2005 Optimum electron distribution for space charge dominated beams.
Cecile Limborg-Deprey Injector Commissioning September Injector Commissioning Plans C.Limborg-Deprey Gun exit measurements.
Cecile Limborg-Deprey Injector October Injector Physics C.Limborg-Deprey Diagnostics and Commissioning GTL measurements.
Results from measurement and simulation methods (LW, PIC, Astra) and setup About LW & Astra Simulations of The Pitz Gun comparison LW  Astra more analysis.
Modelling of the ALICE Injector Julian McKenzie ASTeC STFC Daresbury Laboratory IOP Particle Accelerators and Beams Group Status and Challenges of Simulation.
Influence of the Third Harmonic Module on the Beam Size Maria Kuhn University of Hamburg Bachelor Thesis Presentation.
Photocathode 1.5 (1, 3.5) cell superconducting RF gun with electric and magnetic RF focusing Transversal normalized rms emittance (no thermal emittance)
Astra A Space Charge Tracking Algorithm
Steve LidiaICFA Workshop, Chia LagunaJuly, 2002 Flat Beam Photoinjectors for Ultrafast Synchrotron Radiation Sources Steve Lidia Lawrence Berkeley National.
Low Emittance RF Gun Developments for PAL-XFEL
TTF2 Start-to-End Simulations Jean-Paul Carneiro DESY Hamburg TESLA COLLABORATION MEETING DESY Zeuthen, 22 Jan 2004.
ASTRA Injector Setup 2012 Julian McKenzie 17/02/2012.
High Current Electron Source for Cooling Jefferson Lab Internal MEIC Accelerator Design Review January 17, 2014 Riad Suleiman.
Recent Experiments at PITZ ICFA Future Light Sources Sub-Panel Mini Workshop on Start-to-End Simulations of X-RAY FELs August 18-22, 2003 at DESY-Zeuthen,
Beam Dynamics and FEL Simulations for FLASH Igor Zagorodnov and Martin Dohlus Beam Dynamics Meeting, DESY.
Interpretation of beam current experimental results in HoBiCaT Gun0 Vladimir Volkov.
Accelerator Science and Technology Centre Extended ALICE Injector J.W. McKenzie, B.D. Muratori, Y.M. Saveliev STFC Daresbury Laboratory,
R&D opportunities for photoinjectors Renkai Li 10/12/2015 FACET-II Science Opportunities Workshops October, 2015 SLAC National Accelerator Laboratory.
XFEL Beam Dynamics Meeting Bolko Beutner, DESY Velocity Bunching Studies at FLASH Bolko Beutner, DESY XFEL Beam Dynamics Meeting
K. Floettmann WSHQE, OCT. 5, 2006 WSHQE Oct. 5, 2006 Klaus Floettmann Photo cathode requirements for the European XFEL.
Christopher Gerth DL/RAL Joint Workshop 28-29/4/04 Modelling of the ERLP injector system Christopher Gerth ASTeC, Daresbury Laboratory.
Impact of the Cathode Roughness on the Emittance of an Electron Beam M.Krasilnikov, DESY Zeuthen WSHQE, Milano
D. Lipka, V. Vogel, DESY Hamburg, Germany, Oct Optimization cathode design with gun5 D. Lipka, V. Vogel, DESY Hamburg, Germany.
P I T Z Photo Injector Test Facility Zeuthen Design consideration of the RF deflector to optimize the photo injector at PITZ S.Korepanov.
July LEReC Review July 2014 Low Energy RHIC electron Cooling Jorg Kewisch, Dmitri Kayran Electron Beam Transport and System specifications.
S2E (start-to-end) Simulations at DESY T. Limberg TESLA Collaboration Meeting in Frascati, May 2003.
Status of the Simulations on Photo Injector Optimization for Low Charges Yauhen Kot BD Meeting,
Awake electron beam requirements ParameterBaseline Phase 2Range to check Beam Energy16 MeV MeV Energy spread (  ) 0.5 %< 0.5 % ? Bunch Length (
X-band Based FEL proposal
B. Marchetti R. Assmann, U. Dorda, J. Grebenyuk, Y. Nie, J. Zhu Acknowledgements: C. Behrens, R. Brinkmann, K. Flöttmann, M. Hüning,
Optimization of FAST Electron Gun Beam Parameters Using ASTRA Lucas Kang Lee Teng Presentations August 6, 2015.
S.M. Polozov & Ko., NRNU MEPhI
Beam dynamics simulation with 3D Field map for FCC RF gun
Gun Calculations by Poisson Model for Non-Uniform Distributions
Beam dynamics for an X-band LINAC driving a 1 keV FEL
Preliminary result of FCC positron source simulation Pavel MARTYSHKIN
Sara Thorin, MAX IV Laboratory
Tunable Electron Bunch Train Generation at Tsinghua University
Studies for Particle Driven Plasma Acceleration at PITZ
Beyond the RF photogun Jom Luiten Seth Brussaard
Thermal emittance measurement Gun Spectrometer
Application of a Streak camera at PITZ
Experimental Optimization and Characterization of Electron Beams for Generating IR/THz SASE FEL Radiation with PITZ. P. Boonpornprasert, G. Asova1, Y.
Proposal for optimizing the cathode laser shape for photo injector
Beam Dynamics in a Spilt SRF-Gun
What did we learn from TTF1 FEL?
LCLS Commissioning Parameters
Injector: What is needed to improve the beam quality?
Simulation Calculations
Superconducting High Brightness RF Photoinjector Design
LCLS Commissioning Parameters
Secondary Electron Emission in Photocathode RF Guns
Injector Commissioning C
Modified Beam Parameter Range
Injector Experimental Results John Schmerge, SSRL/SLAC April 24, 2002
Simulations for the LCLS Photo-Injector C
Thermal Emittance Measurement at PITZ
LCLS Commissioning Parameters
Coupler Effects in High Energy Part of XFEL Linac
Electron Optics & Bunch Compression
Minimized emittance for high charge with multi cell superconducting guns and solenoidal focusing D. Lipka, BESSY.
Injector for the Electron Cooler
Update on ERL Cooler Design Studies
Presentation transcript:

Selected simulations for XFEL photo injector Could ellipsoidal shaping be useful for the European XFEL photo injector? M. Krasilnikov, DESY Mini - Workshop on Laser Pulse Shaping DESY Zeuthen 30.11-01.12.2006

Outline Optimization of the XFEL photo injector Conclusions Specifications and layout Optimization strategy Flat-top laser (cylindrical laser pulse shape) Influence of the thermal emittance Ellipsoidal cathode laser shape Flat-top imperfection influence Conclusions 28 February, 2019 M.Krasilnikov, DESY

XFEL Photo Injector Specifications 1 nC charge Uniform transverse distribution Longitudinal flat-top 20 ps with 2 ps rise time Emittance 0.9 mm mrad incl. thermal emittance 60 MV/m at photo cathode 28 February, 2019 M.Krasilnikov, DESY

XFEL photo injector layout Superconducting TESLA module (ACC1) RF gun 28 February, 2019 M.Krasilnikov, DESY

Optimization of the XFEL photo injector Cathode laser (XYrms, [Trms]) + gun parameters (RF Phase, Imain, [sol.pos]) [ ] Emittance (+slope) Booster optimization (booster cavity z-position, gradient and RF phase) Initial guess: booster matching conditions 0 step. “tune” the bunch charge: Qbunch->Q=1nC(@z=5cm) Emission effects (SC, Schottky) Xrms,Xemit 1 step. Run ASTRA till z=5m 28 February, 2019 M.Krasilnikov, DESY

Thermal emittance Ek=0.55 eV Thermal emittance measured at PITZ is higher than expected from theoretical predictions (Schottky effect, cath. roughness) Ek=0.55 eV ph=4.75 eV 28 February, 2019 M.Krasilnikov, DESY

Simulation Cases Thermal emittance Ek=0.55 eV Ek=1.0 eV 2 Cylindrical laser shape 2 1 3 emittance 4 Elliptical laser shape 6 7 5 28 February, 2019 M.Krasilnikov, DESY

Optimization of the XFEL photo injector Case 1: Cylindrical laser shape, flat-top intensity profile 20 ps FWHM 2 ps rise/fall time Optimized parameters: Cathode laser XYrms RF gun launch phase Main solenoid peak field* Booster z-position Booster gradient Booster RF phase *Bucking solenoid - always compensated 28 February, 2019 M.Krasilnikov, DESY

Optimization of the XFEL photo injector Case 1: Cylindrical laser shape, flat-top intensity profile Bunch slice parameters @ z=15m 28 February, 2019 M.Krasilnikov, DESY

Optimization of the XFEL photo injector Case 2: Cylindrical laser shape, flat-top intensity profile. Increased thermal kinetic energy 0.55 eV → 1.0eV Bunch slice emittance @z=15m 28 February, 2019 M.Krasilnikov, DESY

XFEL photo injector: Influence of the thermal emittance ?Further optimization: Cathode laser XYrms RF gun launch phase Main solenoid peak field Booster z-position Booster gradient Booster RF phase 28 February, 2019 M.Krasilnikov, DESY

Optimization of the XFEL photo injector Case 3: Cylindrical laser shape, flat-top intensity profile. Increased thermal kinetic energy 1.0eV, optimized Bunch slice emittance @z=15m Only tiny emittance improvement! 28 February, 2019 M.Krasilnikov, DESY

Laser Shape: Ellipsoid instead of Cylindrical Trms=5.8 ps XYrms=0.44 mm 20 ps FWHM 2 ps rise/fall time 28 February, 2019 M.Krasilnikov, DESY

XFEL photo injector: Ellipsoid Vs. Cylinder Case 4: 3D-ellipsoidal laser shape. Ek=0.55eV Bunch slice emittance @z=15m 28 February, 2019 M.Krasilnikov, DESY

XFEL photo injector: Ellipsoid Vs. Cylinder Case 5: 3D-ellipsoidal laser shape. Ek=0.55eV, optimized Optimized parameters: Cathode laser XYrms Cathode laser Trms RF gun launch phase Main solenoid peak field* Booster gradient Booster RF phase *Bucking solenoid - always compensated 28 February, 2019 M.Krasilnikov, DESY

XFEL photo injector: Ellipsoid Vs. Cylinder Charge density and slice emittance 28 February, 2019 M.Krasilnikov, DESY

XFEL photo injector: Ellipsoid with Ek=1.0 eV Case 6: 3D-ellipsoidal laser shape. (=case 5 + Ek=1.0eV) 28 February, 2019 M.Krasilnikov, DESY

XFEL photo injector: Ellipsoid Vs. Cylinder Case 6: 3D-ellipsoidal laser shape. (=case 5 + Ek=1.0eV) 28 February, 2019 M.Krasilnikov, DESY

XFEL photo injector: Ellipsoid with Ek=1.0 eV Case 7: 3D-ellipsoidal laser shape, Ek=1.0eV . optimized 28 February, 2019 M.Krasilnikov, DESY

XFEL photo injector: Ellipsoid Vs. Cylinder Case 7: 3D-ellipsoidal laser shape, Ek=1.0eV . optimized 28 February, 2019 M.Krasilnikov, DESY

XFEL photo injector: Ellipsoid Vs. Cylinder Charge density and slice emittance. Ek=1.0eV 28 February, 2019 M.Krasilnikov, DESY

Ellipsoid Vs. Cylinder: Emittance Summary Projected Slice (centre) 28 February, 2019 M.Krasilnikov, DESY

XFEL photo injector: Ellipsoid Vs. Cylinder Electron bunch (z,x) @z=15m, cylindrical cathode laser shape Electron bunch (z,x) @z=15m, ellipsoidal cathode laser shape 28 February, 2019 M.Krasilnikov, DESY

Laser shape fine adjustment cathode laser shape electron bunch @z=1cm 28 February, 2019 M.Krasilnikov, DESY

Cathode laser imperfections Emittance growth due to flat-top modulation cath.laser profile cath.laser profile 28 February, 2019 M.Krasilnikov, DESY

Cathode laser imperfections: FT modulation Cathode laser intensity and electron bunch density 28 February, 2019 M.Krasilnikov, DESY

Cathode laser imperfections: FT modulation Microbunching instability gain (courtesy M.Dohlus) Electron bunch density modulation vs. cathode laser intensity modulation 30 n=5 l=1.1mm n=3 l=1.7mm n=1 l=4mm 28 February, 2019 M.Krasilnikov, DESY

Conclusions By optimization the main parameters of the XFEL photo injector one can simulate rather small projected normalized emittance: Slice emittance of the bunch centre reduced in ~10% by applying an ellipsoid laser pulse. Main reduction of the projected emittance is due to significant decrease in head and tail slice emittance of the ellipsoid But practical realization can face problems of shape imperfections (tight tolerances) Ek=0.55 eV 0.68 mm mrad 0.46 mm mrad Ek=1.0 eV 0.77 mm mrad 0.50-0.57 mm mrad 28 February, 2019 M.Krasilnikov, DESY

28 February, 2019 M.Krasilnikov, DESY

Optimization of the XFEL photo injector Based on ASTRA simulations Actual solenoid position Strategy: 2-staged* optimization 1. Only gun (Ecath=60MV/m) 2. Booster (first ½ of ACC1) Scan of the second ½ of ACC1 gradient Goal function: emittance (incl. slope) Penalty function: charge, momentum spread, variable parameters range 28 February, 2019 M.Krasilnikov, DESY