August 2017 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [Suitability of 802.15.4k] Date Submitted:

Slides:



Advertisements
Similar presentations
July 2017 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [Research Project BATS] Date Submitted: [10.
Advertisements

July 2017 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [Suitability Evaluation of Encryption Schemes]
July 2017 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [Suitability Evaluation Modulation] Date Submitted:
August 2017 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [Suitability Evaluation of Network Topologies]
March 2017 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [Suitability of IEEE ah for LPWAN Applications]
August 2018 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [ w w Fraunhofer IIS proposal.
May 2018 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [Discussion on Suitable Parameters for SCHC]
May 2018 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [Discussion on Suitable Parameters for SCHC]
Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [Simulation Results for Interfered Channels]
July 2018 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [SCHC (Static Context Header Compression) IETF.
July 2017 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [Agenda for 3 August 2017 Telco] Date Submitted:
July 2017 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [Suitability Evaluation Modulation] Date Submitted:
July 2017 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [Suitability Evaluation of Connectivity] Date.
July 2017 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [Suitability Evaluation of FEC Schemes] Date.
July 2017 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [Suitability Evaluation of Network Topologies]
March 2017 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [Candidate Technology Suitability Evaluation]
July 2017 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [Suitability Evaluation of MAC Schemes] Date.
June 2017 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [Agenda for 22. June 2017 Telco] Date Submitted:
August 2017 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [Suitability Evaluation of Connectivity]
Jan Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [Proposal for sub-GHz Interference Model] Date.
May 2018 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [Static Context Header Compression] Date Submitted:
September 2018 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [TG w September 2018 Closing Report]
July 2017 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [Agenda for 3 August 2017 Telco] Date Submitted:
Nov Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [Smart Grid with LPWAN Extension] Date Submitted:
September 2017 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [Proposal for Recommendation to WG 15]
July 2018 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [Draft Agenda for 8 August 2018 Telco] Date.
March 2017 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [Candidate IEEE Standards and Technologies.
March 2017 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [Candidate IEEE Standards and Technologies.
July 2018 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [TG w July 2018 Closing Report] Date.
July 2017 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [Suitability Evaluation of Encryption Schemes]
Jan Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [PAR and CSD document discussion] Date Submitted:
November 2016 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [LPWA – Regulator Issues] Date Submitted:
<month year> IEEE July 2013
March 2017 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [Information on IEEE IG LPWA to ETSI.
Submission Title: [Preamble length and packet efficiency for TG4a]
< Sept > Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [IG LPWA Draft Call for Contributions]
December 2018 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [Draft Agenda for 08 January 2019 Telco]
November 2018 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [TG w November 2018 Closing Report]
Feb Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [Agenda for 22. Feb Telco] Date Submitted:
May 2018 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [Discussion on Suitable Parameters for SCHC]
Nov Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [Implementation Approaches for LPWAN Extension]
November 2016 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [IG LPWA November 2016 Closing Report]
September 2017 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [IG LPWA Closing Report September 2017.
Oct Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [Input for coexistence document discussion]
October 2018 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [Draft Agenda for 17 October 2018 Telco]
July 2017 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [Suitability Evaluation of FEC Schemes] Date.
March 2017 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [IG LPWA March 2017 Closing Report] Date Submitted:
June 2017 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [Agenda for 22. June 2017 Telco] Date Submitted:
January 2019 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [TG w January Closing Report] Date.
November 2018 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [ w Fraunhofer IIS proposal performance.
Jan Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [PAR and CSD document discussion] Date Submitted:
July 2017 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [Update on ETSI LTN] Date Submitted: [9 July,
June 2017 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [Joerg Robert] Date Submitted: [22 June, 2017”
July 2017 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [Suitability Evaluation of MAC Schemes] Date.
March 2017 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [ETSI LTN Activities] Date Submitted: [12.
Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [Simulation Results for Interfered Channels]
February 2019 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [Draft Agenda for 08 January 2019 Telco]
January 2019 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [TG w January 2019 Closing Report]
April 2017 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [Agenda for 11. Apr Telco] Date Submitted:
< Oct > Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [IG LPWA Draft Call for Contributions]
doc.: IEEE <doc#>
January 2017 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [IG LPWA January 2017 Closing Report] Date.
May 2018 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [Static Context Header Compression] Date Submitted:
July 2017 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [IG LPWA Closing Report July 2017 Plenary]
Nov Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [IG LPWA Closing Report November 2017 Plenary]
January 2019 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [Channel bandwidth observations] Date Submitted:
Jan Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [Proposal for modulation quality in split mode]
August 2019 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [Draft Agenda for 02 August 2019 CRG Telco]
August 2019 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [Draft Agenda for 19 August 2019 CRG Telco]
July 2017 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [Suitability Evaluation of Connectivity] Date.
Presentation transcript:

August 2017 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [Suitability of 802.15.4k] Date Submitted: [2 August, 2017] Source: [Joerg ROBERT] Company [Friedrich-Alexander University Erlangen-Nuernberg] Address [Am Wolfsmantel 33, 91058 Erlangen, Germany] Voice:[+49 9131 8525373], FAX: [+49 9131 8525102], E-Mail:[joerg.robert@fau.de] Re: [Updated numbers] Abstract: [Suitability of IEEE 802.15.4k] Purpose: [Presentation in IG LPWA telco] Notice: This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein. Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15. Joerg ROBERT, FAU Erlangen-Nuernberg

Suitability of IEEE 802.15.4k August 2017 Joerg Robert, FAU Erlangen-Nuernberg

August 2017 Background Pat presented a white paper on the suitability of IEEE 802.15.4 for LPWAN applications (15-17/248r0) (https://mentor.ieee.org/802.15/dcn/17/15-17-0248-00-lpwa-summary-of-ieee-std-802-15-4-lecim.docx) Existing IEEI 802.15.4 technologies already fulfill many requirements of LPWAN Open questions remained on the applied fragmentation approach in order to fulfill the 0.4s FCC requirement Joerg Robert, FAU Erlangen-Nuernberg

August 2017 Fragmentation in 802.15.4k 802.15.4k allows the efficient fragmentation of the MPDU into multiple PSDU If FEC is used each PSDU uses a separate FEC encoding The fragmentation approach uses compression techniques to minimize the additional fragmentation overhead Joerg Robert, FAU Erlangen-Nuernberg

PSDU PHY Modulation The PHY Modulation treats every PSDU separately August 2017 PSDU PHY Modulation IEEE 802.15.4k FSK PHY Modulation Block Diagram The PHY Modulation treats every PSDU separately Separate FEC encoding, separate sync, ... Reassembly is achieved after FEC decoding in the receiver Joerg Robert, FAU Erlangen-Nuernberg

Pros and Cons of the Current Approach August 2017 Pros and Cons of the Current Approach Pros: PHY Modulation wrt. other 802.15.4 systems is kept unchanged Simple decoding and re-assembly Frequency hopping possible to achieve 0.4s FCC limitation Cons: Significant loss wrt. theoretical performance The lowest possible data-rate is limited due to the overhead Additional signaling overhead gets very significant for low data-rates Joerg Robert, FAU Erlangen-Nuernberg

Loss wrt. Theoretical Performance August 2017 Loss wrt. Theoretical Performance Loss of performance in case of limited payload block sizes k of the code  Short code words lead to reduces performance Γ denotes the spectral efficiency Vertical lines are the Shannon Capacity Joerg Robert, FAU Erlangen-Nuernberg

PSDU Length ( I / II ) Format of the 802.15.4k FSK PHY August 2017 PSDU Length ( I / II ) Format of the 802.15.4k FSK PHY Each fragment has at least 5 bytes overhead due to SFD (3 bytes) and PHR (2 bytes) Joerg Robert, FAU Erlangen-Nuernberg

August 2017 PSDU Length ( II / II ) The depicted structure forms the PSDU (see previous slide) The fragment format adds 4 or 6 additional bytes overhead This results in the following overhead: 3 bytes (SFD) + 2 bytes (PHR) + 2 bytes (Fragment Header) + 2/4 bytes FVS (16 or 32 bit)  Each fragment contains at 9 / 11 byte of overhead Joerg Robert, FAU Erlangen-Nuernberg

Most Robust Transmission August 2017 Most Robust Transmission Most robust transmission is achieved with lowest possible bit-rate Minimum bit-rate is limited due to maximum transmit duration of 0.4s (FCC regulation), and each PSDU has to transmit the overhead We will consider max. robust transmission with only 1 payload byte per fragment  results in 90% overhead Furthermore we will consider 9 payload byte per fragment  results in more realistic 50% overhead Additional overhead due to the MPDU fragment sequence context description (802.15.4k-2013, 5.2.4.25) is not considered Joerg Robert, FAU Erlangen-Nuernberg

August 2017 90% Overhead Case ( I / II ) We now assume that each fragment contains only 1 byte payload data, FEC is not used  Fragment size of 10 byte = 80 bits Lowest bit-rate without coding: 200 bit/s with 90% overhead to meet FCC 0.4s requirement 1% packet error rate (PER) for the PSDU requires Eb/N0= SNR=8dB (coherent decoder, MSK) Perfect decoder would require Eb/N0=-1.59dB  loss of 9.56dB wrt. theoretical bound Packet Error Rate vs. SNR for uncoded MSK with coherent demodulation and packet length 80 bit Joerg Robert, FAU Erlangen-Nuernberg

90% Overhead Case ( II / II ) <month year> doc.: IEEE 802.15-<doc#> August 2017 90% Overhead Case ( II / II ) 90% overhead case would allow for minimum reception level of -142dBm Calculation does not take implementation losses into account Calculation assumes uncoded (i.e. no FEC) transmission 200bit/s 9.56dB loss -142dBm Joerg Robert, FAU Erlangen-Nuernberg <author>, <company>

August 2017 50% Overhead Case We now assume that each fragment contains 9 byte payload data, FEC is not used  Fragment size of 18 byte = 144 bits Lowest bit-rate without coding: 360 bit/s with 50% overhead 1% PER requires Eb/N0= 8.5dB  loss of 10dB wrt. theoretical bound Results in minimum reception level of -139dBm Does not fulfill LPWAN requirement of min. sensitivity of -140dBm Joerg Robert, FAU Erlangen-Nuernberg

Calculations with Coding August 2017 Calculations with Coding The bit-rate vs. RX power curves only consider the payload bit-rate as they are normalized to Eb/N0 200 bit/s and 360 bit/s are still valid 1% PER requires Eb/N0 of approx. 3dB for 80 and 144 bit Loss of 5.6dB wrt. theoretical bound -146dBm for 90% overhead -143dBm for 50% overhead FEC significantly improves the performance Packet Error Rate vs. Eb/N0 for coded (802.15.4k conv. code) MSK with coherent demodulation and payload packet length 144 bit Joerg Robert, FAU Erlangen-Nuernberg

doc.: IEEE 802.15-<doc#> <month year> doc.: IEEE 802.15-<doc#> August 2017 Loss due to Overhead Additional overhead reduces payload bit-rate (50% assumption) 13...20dB loss wrt. theoretical limits 20 ... 100 times the energy of a perfect system  battery lifetime Worse than competitors (15-16-0486r0) w/ coding w/o coding Joerg Robert, FAU Erlangen-Nuernberg <author>, <company>

August 2017 Conclusions Fragmentation is one mean in 802.15.4k to reduce the transmit duration to meet FCC regulation However, the employed MAC fragmentation shows significant gaps wrt. the theoretical limits Using 802.15.4 with lower PHY fragmentation could significantly improve the results >20 dB more sensitivity More than 20 time less energy The calculations did not take the additional signaling into account Further improvements wrt. interference are not considered here Joerg Robert, FAU Erlangen-Nuernberg

Thank You for Your Interest! August 2017 Thank You for Your Interest! Joerg Robert, FAU Erlangen-Nuernberg