Source : Signal Processing, vol. 126, pp ,  November 2016

Slides:



Advertisements
Similar presentations
Reversible Data Hiding Based on Two-Dimensional Prediction Errors
Advertisements

1 Adjustable prediction-based reversible data hiding Authors: Chin-Feng Lee and Hsing-Ling Chen Source: Digital Signal Processing, Vol. 22, No. 6, pp.
A High Performance Multi-layer Reversible Data Hiding Scheme Using Two-Step Embedding Authors: Jinxiang Wang Jiangqun Ni Jinwei Pan.
1 Reversible image hiding scheme using predictive coding and histogram shifting Source: Signal Processing, vol. 89, no. 6, June 2009, pp Author:
Reversible data hiding based on histogram shifting scheme Reporter: Date: Wan-Yu Lu 2012/12/13.
Steganography of Reversible Data Hiding Producer: Chia-Chen Lin Speaker: Paul 2013/06/26.
Improved PVO-based reversible data hiding Source: Digital Signal Processing, 2014 Authors: Fei Peng, Xiaolong Li,ng Reporter: Min-Hao Wu.
Multimedia Network Security Lab. On STUT Adaptive Weighting Color Palette Image Speaker:Jiin-Chiou Cheng Date:99/12/16.
1 Reversible data hiding for high quality images using modification of prediction errors Source: The Journal of Systems and Software, In Press, Corrected.
Adjustable prediction-based reversible data hiding Source: Authors: Reporter: Date: Digital Signal Processing, Vol. 22, No. 6, pp , 2012 Chin-Feng.
1 An Efficient VQ-based Data Hiding Scheme Using Voronoi Clustering Authors:Ming-Ni Wu, Puu-An Juang, and Yu-Chiang Li.
Reversible watermarking Wu Dan Introduction What?
Reversible image hiding scheme using predictive coding and histogram shifting Source: Authors: Reporter: Date: Signal Processing, Vol.89, Issue 6, pp ,
Reversible Date Hiding Based on Histogram Modification of pixel Differences IEEE Transactions on circuits and systems for video technology, VOL. 19, NO.
A lossless data hiding scheme based on three- pixel block differences Ching-Chiuan Lin and Nien-Lin Hsueh Pattern Recognition, Vol. 41(4), April 2008 Pages.
Reporter :Chien-Wen Huang Date : Information Sciences, Vol. 176, No. 22, Nov. 2006, pp Received 29 December 2004; received in revised.
南台科技大學 資訊工程系 Data hiding based on the similarity between neighboring pixels with reversibility Author:Y.-C. Li, C.-M. Yeh, C.-C. Chang. Date:
1 LSB Matching Revisited Source: IEEE Signal Processing Letters (Accepted for future publication) Authors: Jarno Mielikainen Speaker: Chia-Chun Wu ( 吳佳駿.
1 Reversible visible watermarking and lossless recovery of original images Source: IEEE transactions on circuits and systems for video technology, vol.
1 Adaptive Data Hiding in Edge Areas of Images with Spatial LSB Domain Systems Source: IEEE Transactions on Information Forensics and Security, Vol. 3,
基於 (7,4) 漢明碼的隱寫技術 Chair Professor Chin-Chen Chang ( 張真誠 ) National Tsing Hua University National Chung Cheng University Feng Chia University
Advisor: Chang, Chin-Chen Student: Chen, Chang-Chu
基於(7,4)漢明碼的隱寫技術 Chair Professor Chin-Chen Chang (張真誠)
(k, n)-Image Reversible Data Hiding
Image camouflage by reversible image transformation
Reversible Data Hiding in JPEG Images using Ordered Embedding
Source :Journal of visual Communication and Image Representation
Reversible data hiding scheme based on significant-bit-difference expansion Sourse: IET Image Processing ( Volume: 11, Issue: 11, ), Pages 1002.
New Framework of Reversible Data Hiding in Encrypted JPEG Bitstreams
Source : Signal Processing, vol. 150, pp ,  September 2018
Hiding Data in a Color Palette Image with Hybrid Strategies
Advisor: Chin-Chen Chang1, 2 Student: Yi-Pei Hsieh2
Source: Information Sciences, 2018, accpeted.
Reversible data hiding with contrast enhancement using adaptive histogram shifting and pixel value ordering Source: Signal Processing: Image Communication.
Skewed Histogram Shifting for Reversible Data Hiding using a Pair of Extreme Predictions Source: IEEE Transactions on Circuits and Systems for Video Technology(
Advisor: Prof. Chin-Chen Chang (張真誠 教授) Student: Wei-Liang Tai (戴維良)
Reversible Data Hiding
Reversible Data Hiding Scheme Using Two Steganographic Images
An efficient reversible image authentication method using improved PVO and LSB substitution techniques Source : Signal Processing: Image Communication,
Chair Professor Chin-Chen Chang (張真誠) National Tsing Hua University
Source: Signal Processing: Image Communication 64 (2018) 78-88
Source:. IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL
Source: IEEE Access, Vol. 6, Dec. 2017, pp
Source: Signal Processing, Vol. 125, pp , August 2016.
A reversible and secure patient information hiding system for IoT driven e-health Source : International Journal of Information Management, Available online.
Reversible Data Hiding in JPEG Images
Source : Journal of Visual Communication and Image Representation, vol
Data hiding method using image interpolation
Skewed Histogram Shifting for Reversible Data Hiding using a Pair of Extreme Predictions Source: IEEE Transactions on Circuits and Systems for Video Technology(
Dynamic embedding strategy of VQ-based information hiding approach
Chair Professor Chin-Chen Chang (張真誠) National Tsing Hua University
Source : Journal of Visual Communication and Image Representation, vol
Chair Professor Chin-Chen Chang Feng Chia University
Authors: Chin-Chen Chang, Yi-Hui Chen, and Chia-Chen Lin
Data hiding method using image interpolation
Chair Professor Chin-Chen Chang Feng Chia University
New Framework for Reversible Data Hiding in Encrypted Domain
Multi-Tier and Multi-Bit Reversible Data Hiding with Contents Characteristics Source : Journal of Information Hiding and Multimedia Signal Processing, Volume.
Source: J. Vis. Commun. Image R. 31 (2015) 64–74
Unconstraint Optimal Selection of Side Information for Histogram Shifting Based Reversible Data Hiding Source:  IEEE Access. March, doi: /ACCESS
Blind Reversible Authentication Based on PEE and CS Reconstruction
An efficient reversible data hiding with reduplicated exploiting modification direction using image interpolation and edge detection Source: Multimedia.
Source: Signal Processing Volume 111 June 2015, Pages
Source: IET Image Processing, Vol. 4, No. 4, Aug. 2010, pp
Authors: Chin-Chen Chang, Yi-Hui Chen, and Chia-Chen Lin
Dynamic improved pixel value ordering reversible data hiding
Lossless Data Hiding in the Spatial Domain for High Quality Images
Reversible data hiding with contrast enhancement using adaptive histogram shifting and pixel value ordering Source: Signal Processing: Image Communication.
Adopting secret sharing for reversible data hiding in encrypted images
Reversible data hiding in encrypted binary images by pixel prediction
Presentation transcript:

An efficient reversible data hiding algorithm using two steganographic images Source : Signal Processing, vol. 126, pp. 98-109,  November 2016 Authors : lyad F.Jafar , Khalid A.Darabkh , Read T.AI-Zubi and Ramzi R.Saifan Speaker : Chia-Shuo Shih Date : 2018/03/22 1

Outline Related work Proposed method Experimental results Conclusions 2

Related work-Histogram Shifting 2 3 4 5 1 Z. Ni, Y.Q. Shi, N. Ansari, W. Su Reversible data hiding IEEE Trans. Circuits Syst. Video Technol., 16 (3) (2006), pp. 354-362 3

Related work-Histogram Shifting 2 3 5 6 1 4

Related work-Histogram Shifting 2 3 5 6 1 2 3 5 6 4 1 s = 010111001 5

Proposed method 6

Proposed method-First Phase 44 43 45 46 47 48 CI1(m,n) 44 43 45 46 47 48 7 CI2(m,n)

Proposed method-First Phase CI1(m,n) CI2(m,n) Bit pair to embed TI1(m,n) TI2(m,n) (00)2 CI1(m,n)+2 CI2(m,n)+0 (01)2 CI1(m,n)+0 CI2(m,n)+1 (10)2 (11)2 CI1(m,n)−1 8

Proposed method-First Phase Bit pair to embed TI1(m,n) TI2(m,n) (00)2 CI1(m,n)+2 CI2(m,n)+0 (01)2 CI1(m,n)+0 CI2(m,n)+1 (10)2 (11)2 CI1(m,n)−1 44 43 45 46 47 48 46 43 45 44 47 48 49 Secret Bit:00100111 CI1(m,n) TI1(m,n) 44 43 45 46 47 48 44 43 46 45 48 49 47 Secret Bit:00100111001011100000011011100100 9 CI2(m,n) TI2(m,n)

1. 2. 3. Proposed method-Second Phase PE1(m,n) = TI1(m,n) − TI2(m,n) SI1(m,n)=TI2(m,n)+MPE1(m,n) 10

Proposed method-Second Phase PE1(m,n) = TI1(m,n) − TI2(m,n) 46 43 45 44 47 48 49 44 43 46 45 48 49 47 2 -1 -2 TI1(m,n) TI2(m,n) PE1(m,n) 11

Proposed method-Second Phase 2 -1 -2 1 -1 -2 2 Secret Bit:10110 PE1(m,n) MPE1(m,n) 12

Proposed method-Second Phase SI1(m,n)=TI2(m,n)+MPE1(m,n) 44 43 46 45 48 49 47 1 -1 -2 2 45 43 46 44 47 48 49 TI2(m,n) MPE1(m,n) SI1(m,n) 13

1. 2. 3. Proposed method-Third Phase PE2(m,n)=TI2(m,n)−SI1(m,n) SI2(m,n)=SI1(m,n)+MPE2(m,n) 14

Proposed method-Third Phase PE2(m,n)=TI2(m,n)−SI1(m,n) 44 43 46 45 48 49 47 45 43 46 44 47 48 49 -1 1 -2 2 TI2(m,n) SI1(m,n) PE2(m,n) 15

Proposed method-Third Phase -1 1 -2 2 -2 1 -1 -3 2 Secret Bit:0110011 PE2(m,n) MPE2(m,n) 16

Proposed method-Third Phase SI2(m,n)=SI1(m,n)+MPE2(m,n) 45 43 46 44 47 48 49 -2 1 -1 -3 2 43 46 42 44 48 45 47 49 SI1(m,n) MPE2(m,n) SI2(m,n) 17

Proposed method-Third Phase 43 46 42 44 48 45 47 49 45 43 46 44 47 48 49 SI1(m,n) SI2(m,n) 18

Proposed method-extraction procedure MPE2(m,n)=SI2(m,n)−SI1(m,n) 43 46 42 44 48 45 47 49 45 43 46 44 47 48 49 -2 1 -1 -3 2 SI1(m,n) SI2(m,n) MPE2(m,n) 19

Proposed method-extraction procedure -2 1 -1 -3 2 -1 1 -2 2 Secret Bit:0110011 MPE2(m,n) PE2(m,n) 20

Proposed method-extraction procedure TI2(m,n)=SI1(m,n)+PE2(m,n) -1 1 -2 2 45 43 46 44 47 48 49 44 43 46 45 48 49 47 SI1(m,n) PE2(m,n) TI2(m,n) 21

Proposed method-extraction procedure MPE1(m,n)=SI1(m,n)−TI2(m,n) 45 43 46 44 47 48 49 44 43 46 45 48 49 47 1 -1 2 -2 SI1(m,n) MPE1(m,n) TI2(m,n) 22

Proposed method-extraction procedure 1 -1 2 -2 2 -1 -2 Secret Bit:10110 MPE1(m,n) PE1(m,n) 23

Proposed method-extraction procedure TI1(m,n)=TI2(m,n)+PE1(m,n) 44 43 46 45 48 49 47 2 -1 -2 47 43 45 46 44 48 PE1(m,n) TI2(m,n) TI1(m,n) 24

Proposed method-extraction procedure 47 43 45 46 44 48 44 43 46 45 48 49 47 TI1(m,n) TI2(m,n) 25

Experimental results 26 Lena Mandrill Pepper Barbara Boat Goldhill Zelda Washsat Chang et al. [26] PSNR1 39.89 39.91 39.94 39.9 39.88 PSNR2 Capacity 802,895 802,524 799,684 802,888 802,716 802,698 802,789 802,535 Qin et al. [27] 52.11 52.04 51.25 52.12 51.72 52.06 41.58 41.56 41.52 41.57 41.75 557,052 557,096 557,245 557,339 557,194 557,264 557,129 Lu et al. [28] 49.13 47.95 49.11 49.14 49.00 49.17 49.12 49.15 49.08 49.07 49.09 524,288 522,996 524,192 524,208 524,276 Proposed 48.70 48.71 48.72 48.73 650,369 650,799 627,637 650,781 651,093 650,726 650,054 650,481 26

Experimental results 27

Experimental results 28

Experimental results Algorithm Embedding Extraction Total Chang et al. [26] 2.16 3.67 5.83 Qin et al. [27] 1.03 0.43 1.46 Lu et al. [28] 1.65 0.47 2.12 Proposed 0.46 0.17 0.63 29

Conclusions PSNR Capacity Run Time 30

-END- 31