R. CORNAT - LPC - LECC Colmar - septembre 2002 1 Level 0 trigger decision unit for the LHCb experiment Rémi CORNAT, Régis LEFEVRE, Jacques LECOQ, Pascal.

Slides:



Advertisements
Similar presentations
You have been given a mission and a code. Use the code to complete the mission and you will save the world from obliteration…
Advertisements

Advanced Piloting Cruise Plot.
1 Vorlesung Informatik 2 Algorithmen und Datenstrukturen (Parallel Algorithms) Robin Pomplun.
Copyright © 2003 Pearson Education, Inc. Slide 1 Computer Systems Organization & Architecture Chapters 8-12 John D. Carpinelli.
Chapter 1 The Study of Body Function Image PowerPoint
1 Copyright © 2013 Elsevier Inc. All rights reserved. Chapter 4 Computing Platforms.
1 Copyright © 2013 Elsevier Inc. All rights reserved. Chapter 1 Embedded Computing.
Properties Use, share, or modify this drill on mathematic properties. There is too much material for a single class, so you’ll have to select for your.
By Rick Clements Software Testing 101 By Rick Clements
and 6.855J Spanning Tree Algorithms. 2 The Greedy Algorithm in Action
Jeopardy Q 1 Q 6 Q 11 Q 16 Q 21 Q 2 Q 7 Q 12 Q 17 Q 22 Q 3 Q 8 Q 13
Jeopardy Q 1 Q 6 Q 11 Q 16 Q 21 Q 2 Q 7 Q 12 Q 17 Q 22 Q 3 Q 8 Q 13
Multiplying binomials You will have 20 seconds to answer each of the following multiplication problems. If you get hung up, go to the next problem when.
FACTORING ax2 + bx + c Think “unfoil” Work down, Show all steps.
Addition Facts
Year 6 mental test 5 second questions
XFEL 2D Pixel Clock and Control System Train Builder Meeting, DESY 18 February 2010 Martin Postranecky, Matt Warren, Matthew Wing.
XFEL 2D Pixel Clock and Control System Train Builder Meeting, DESY 22 October 2009 Martin Postranecky, Matt Warren, Matthew Wing.
XFEL 2D Pixel Clock and Control System Train Builder Meeting, DESY 18 February 2010 Martin Postranecky, Matt Warren, Matthew Wing.
XFEL Meeting, RAL 20 January 2011 Erdem Motuk, Martin Postranecky, Matt Warren, Matthew Wing XFEL 2D Pixel Clock and Control System.
Around the World AdditionSubtraction MultiplicationDivision AdditionSubtraction MultiplicationDivision.
Figure 12–1 Basic computer block diagram.
Mehdi Naghavi Spring 1386 Operating Systems Mehdi Naghavi Spring 1386.
ABC Technology Project
Introduction to DDR SDRAM
Chapter 3 Logic Gates.
CS105 Introduction to Computer Concepts GATES and CIRCUITS
Chapter 15 Integrated Services Digital Network ISDN Services History Subscriber Access Layers BISDN WCB/McGraw-Hill The McGraw-Hill Companies, Inc., 1998.
DAQmx下多點(Multi-channels)訊號量測
VOORBLAD.
Chapter 4 Gates and Circuits.
Name Convolutional codes Tomashevich Victor. Name- 2 - Introduction Convolutional codes map information to code bits sequentially by convolving a sequence.
Factor P 16 8(8-5ab) 4(d² + 4) 3rs(2r – s) 15cd(1 + 2cd) 8(4a² + 3b²)
© 2012 National Heart Foundation of Australia. Slide 2.
Understanding Generalist Practice, 5e, Kirst-Ashman/Hull
GG Consulting, LLC I-SUITE. Source: TEA SHARS Frequently asked questions 2.
Addition 1’s to 20.
25 seconds left…...
Gursharan Singh Tatla PIN DIAGRAM OF 8086 Gursharan Singh Tatla Gursharan Singh Tatla
Week 1.
Chapter 10: The Traditional Approach to Design
Systems Analysis and Design in a Changing World, Fifth Edition
We will resume in: 25 Minutes.
©Brooks/Cole, 2001 Chapter 12 Derived Types-- Enumerated, Structure and Union.
©2004 Brooks/Cole FIGURES FOR CHAPTER 12 REGISTERS AND COUNTERS Click the mouse to move to the next page. Use the ESC key to exit this chapter. This chapter.
Interfacing to the Analog World
PSSA Preparation.
First developments of DAQ\Trigger for RPC 30 October, 2002 General layout of OPERA DAQ\Trigger Naples activity Conclusions Adele Di Cicco Naples RPC Groups:
20 July 2006 H. Chanal, R. Cornat, E. Delage, O. Deschamps, J. Laubser, M. Magne, P. Perret LPC Clermont Level 0 Decision Unit PRR.
DSP online algorithms for the ATLAS TileCal Read Out Drivers Cristobal Cuenca Almenar IFIC (University of Valencia-CSIC)
Status of Global Trigger Global Muon Trigger Sept 2001 Vienna CMS-group presented by A.Taurok.
HBD FEM Overall block diagram Individual building blocks Outlook ¼ detector build.
The L0 Calorimeter Trigger U. Marconi On behalf of the Bologna Group CSN1, Catania 16/9/02.
- L0DU - Monitoring issues L0 workshop – LHCb 10 January 2006 Hervé Chanal, Rémi Cornat, Emmanuel Delage, Olivier Deschamps, Julien Laubser, Magali Magne,
11 October 2002Paul Dauncey - CDR Introduction1 CDR Introduction and Overview Paul Dauncey Imperial College London.
Common test for L0 calorimeter electronics (2 nd campaign) 4 April 2007 Speaker : Eric Conte (LPC)
L0DU software interface L0 workshop – LHCb 12 May 2005 Rémi Cornat, Emmanuel Delage, Olivier Deschamps, Julien Laubser, Pascal Perret LPC-Clermont.
1 Status of Validation Board, Selection Board and L0DU Patrick Robbe, LAL Orsay, 19 Dec 2006.
1 Timing of the calorimeter monitoring signals 1.Introduction 2.LED trigger signal timing * propagation delay of the broadcast calibration command * calibration.
GPL Board Pattern Generator for the Level-0 Decision Unit Hervé Chanal, Rémi Cornat, Emmanuel Delage, Olivier Deschamps, Julien Laubser, Jacques Lecoq,
The LHCb Calorimeter Triggers LAL Orsay and INFN Bologna.
LHCb Week 27/10/04 J.LAUBSER L.P.C/IN2P3 1 Level 0 Decision Unit: Debugging and Monitoring Remi Cornat, Emmanuel Delage, Julien.
Production Firmware - status Components TOTFED - status
L0 processor for NA62 Marian Krivda 1) , Cristina Lazzeroni 1) , Roman Lietava 1)2) 1) University of Birmingham, UK 2) Comenius University, Bratislava,
Commodity Flash ADC-FPGA Based Electronics for an
The LHCb L0 Calorimeter Trigger
Front-end Electronics for the LHCb Preshower Rémi CORNAT, Gérard BOHNER, Olivier DESCHAMPS, Jacques LECOQ, Pascal PERRET LPC Clermont-Ferrand.
TELL1 A common data acquisition board for LHCb
Presentation transcript:

R. CORNAT - LPC - LECC Colmar - septembre Level 0 trigger decision unit for the LHCb experiment Rémi CORNAT, Régis LEFEVRE, Jacques LECOQ, Pascal PERRET LPC Clermont-Ferrand

R. CORNAT - LPC - LECC Colmar - septembre Outline Introduction I/O General architecture Algorithms (prototype) Prototype Test bench

R. CORNAT - LPC - LECC Colmar - septembre L0DU Provides the final L0 trigger decision Decision based on L0 trigger processor (E/HCAL, MUON) RS can apply a veto Decision fan-out by TTC system

R. CORNAT - LPC - LECC Colmar - septembre L0DU input/output Calorimeters : MHz MUON : MHz VETO : MHz Total : MHz (2.5 Go/s) RSDA : MHz (to Readout Supervisor) L0Block : MHz MHz to L1) Standard data word - 32 bits - 8b BCID - 8b energy

R. CORNAT - LPC - LECC Colmar - septembre Timing Fully synchronous Events sorted in time order Each data source have a fixed latency Not precisely known Minimum latency of L0DU : 275 ns Includes output drivers and cables Additional latency : 250 ns Advanced algorithms 525 ns

R. CORNAT - LPC - LECC Colmar - septembre L0DU logical architecture

R. CORNAT - LPC - LECC Colmar - septembre RSDA Decision word sent to Readout Supervisor 1b decision 12b BCID (provided by TTC) 1b ask for forced trigger (calibration) 1b timing trigger bit (time alignment) Timing trigger bit set to '1' when Positive decision for BC #N No trigger for BC N-1, N-2, N+1, N+2 No functional errors

R. CORNAT - LPC - LECC Colmar - septembre L0Block 32 words of 32 bits Sent one by one for each L0 trigger Words sent one by one at 40 MHz Information for L1 trigger L0DU I/Os Decision history Intermediate results

R. CORNAT - LPC - LECC Colmar - septembre L0DU physical architecture A lot of point to point connections External Internal Use of fpga High density (I/O pins, logic cells, internal memory) to limit connection issues BGA type package Integrated LVDS,... I/O buffers Single PCB (no internal connectors and cables if possible) Do not need a crate APEX Virtex

R. CORNAT - LPC - LECC Colmar - septembre Input/output format Use of standard connectors and cables Ethernet CAT5+, RJ45 Input : serial LVDS (48 bits on 9 pairs or 21 bits on 4 pairs) for < 20 m links DS90LV483/4 (National Semiconductor) Up to 672 Gbyte/s Pre-emphasis feature DC balancing Tested at LAL (Orsay, France) Output : 40 MHz LVDS

R. CORNAT - LPC - LECC Colmar - septembre Algorithms (examples) 3 highest muon search (out of 8) 3 clock cycles, comparator tree Thresholds Invariant mass (muons) Combination between simple conditions Downscaling : temporally relaxed conditions Rate division Acceptation %

R. CORNAT - LPC - LECC Colmar - septembre First prototype No ECS, no TTC I/O format : 40 MHz LVDS 96 inputs bits, 32 outputs bits 5 ACEX1K100 (Altera) Simple but exhaustive algorithms Synchronization Trigger conditions Downscaling L0Block building (internal memory)

R. CORNAT - LPC - LECC Colmar - septembre First prototype (2) 5 fpgas LVDS I/O RJ45 connectors PCB : 24.5x23.3 cm

R. CORNAT - LPC - LECC Colmar - septembre First prototype architecture 1,2 : partial data processing 3 : final processing and decision 4 : storage 5 : L0Block - 3 configuration jumpers per fpga - few spare I/O

R. CORNAT - LPC - LECC Colmar - septembre L0block Use of internal memory pipe-line then fifo if trigger multiplexing controlled by comb. Logic and fsm

R. CORNAT - LPC - LECC Colmar - septembre Prototype input data L0 wordNotationSynchronisation Primary vertex vetoveFirst available word Highest electronel11 BC after ve Highest hadronh111 BC after ve Second highest hadronh211 BC after ve Calorimeter veto Et 11 BC after ve Highest muonmu15 BC after ve L0 word(s)Encoding ve 6 bits for BCID 2 bits for error 8 bits for multiplicity el, h1 and h2 6 bits for BCID 2 bits for error 8 bits for Et Et6 bits for BCID 10 bits for Et mu 6 bits for BCID 2 bits for error 1 bit for charge 7 bits for Pt

R. CORNAT - LPC - LECC Colmar - septembre Very simple algorithm (example) L0 decision positive if {[ Et of the highest electron electron threshold ] or [ Et of the highest hadron one hadron threshold ] or [ ( Et of the highest hadron two hadrons first threshold ) and ( Et of the second highest hadron two hadrons second threshold ) ] or [ Pt of the highest muon muon threshold ] } and { primary vertex veto multiplicity primary vertex veto threshold } and { Et of calorimeter veto calorimeter veto threshold }

R. CORNAT - LPC - LECC Colmar - septembre Downscaling ConditionDownscaling 0No downscale at all 1One electron trigger with a lower threshold after few electron triggers 2As in 1 but with others downscaled threshold and frequency 3One muon trigger with a lower threshold after few muon triggers 4 One trigger with lower threshold(s) after few corresponding triggers for electron, one hadron, two hadrons and muon channels 5 Normal electron triggers A part of electron triggers with a lower threshold 6 Normal muon triggers A part of muon triggers with a lower threshold 7 One trigger with lower threshold(s) after few corresponding triggers for one hadron, two hadrons and muon channels Normal electron triggers A part of electron triggers with a lower threshold

R. CORNAT - LPC - LECC Colmar - septembre L0DU Report BitSignificationBitSignification 0L0 decision 1Electron trigger2Downscaled electron trigger 3One hadron trigger4Downscaled one hadron trigger 5Two hadrons trigger6Downscaled two hadrons trigger 7Muon trigger8Downscaled muon trigger 9Forced trigger L0DU Initialisation: L0 Data partially lost 13Synchronisation error on L0 Data14Error on L0 Data 15 L0 Block warning: FIFO line 12 (max =16)

R. CORNAT - LPC - LECC Colmar - septembre RSDA Sent 9 BC after reception of last L0 Data word Available at Readout Supervisor input after 10 BC See timing of RSDA computation Bit(s)Signification 0L0 decision 1 to 12BCID on 12 bits (6+6) 13Forced trigger 14Timing trigger bit (BC-2, BC-1, BC, BC +1, BC+2) 15 L0 Block warning: FIFO line 12 (max=16)

R. CORNAT - LPC - LECC Colmar - septembre L0 Block Ready when RSDA is ready: 40 BC before L0 Trigger Word(s)SignificationWord(s)Signification 0Header: downscaling condition16L0DU Report (BC) 1BCID on 12 bits (6+6)17L0DU Report (BC+1) 2h1 on 10 bits: no BCID18L0DU Report (BC+2) 3h2 on 10 bits: no BCID19 Et(BC-2) Et(BC-1) 4 Et on 10 bits: no BCID 20 Et(BC+1) Et(BC+2) 5ve on 10 bits: no BCID21Normal trigger counter 6mu on 10 bits: no BCID22Downscaled trigger counter 7el on 10 bits: no BCID23Forced trigger counter 8Max Et (h1,h2,mu,el)24Counter of synchronisation error on L0 Data 9 to 13-25Counter of error on L0 Data 14L0DU Report (BC-2)26Counter of L0 Block warning 15L0DU Report (BC-1)27 to 31- ECS

R. CORNAT - LPC - LECC Colmar - septembre Test bench Need to synchronize : clock board Fan-out of LVDS and ECL clock signals (10-60 MHz) Manual « start » signal Need to stimulate : memory board bits 40 MHz LVDS words VME controlled C++ software (C++/PVSS software foreseen) Connections : Ethernet CAT5+ and RJ45

R. CORNAT - LPC - LECC Colmar - septembre Test bench (2)

R. CORNAT - LPC - LECC Colmar - septembre Memory board 16 RJ45 VME interface 4 RAMs 64 LVDS reversible I/O PCB : 24x23.3 cm

R. CORNAT - LPC - LECC Colmar - septembre Functionalities Parameters Start and end addresses Number of runs Pipe-line delay External synchronisation signal Many boards in parallel Software in C (LabView version also exists) Electrical format conversion modules can be added

R. CORNAT - LPC - LECC Colmar - septembre Conclusion First prototyping successful Emphasis on test bench Embedded test bench foreseen Second prototype (Q1'2004) ECS TTC Up-market fpga