VLBI Estimates of Vertical Crustal Motion in Europe

Slides:



Advertisements
Similar presentations
A comparison of R1 and R4 IVS networks S.B. Lambert, Royal Observatory of Belgium, formerly at NVI, Inc./US Naval Observatory A.-M. Gontier, Paris Observatory.
Advertisements

Processing of VLBI observation in St. Petersburg University Kudryashova Maria Astronomical Institute of Saint Petersburg University.
Geodetic Reference Frames In Presence of Crustal Deformations Martin Lidberg 1,2, Maaria Nordman 3, Jan M. Johansson 1,4, Glenn A Milne5, Hans-Georg Scherneck.
Reference Frames for GPS Applications and Research
VieVS User Workshop 7 – 9 September, 2010 Vienna Vie_LSM Kamil Teke and Johannes Böhm.
On the alternative approaches to ITRF formulation. A theoretical comparison. Department of Geodesy and Surveying Aristotle University of Thessaloniki Athanasios.
Effect of Surface Loading on Regional Reference Frame Realization Hans-Peter Plag Nevada Bureau of Mines and Geology and Seismological Laboratory University.
2-3 November 2009NASA Sea Level Workshop1 The Terrestrial Reference Frame and its Impact on Sea Level Change Studies GPS VLBI John Ries Center for Space.
International Terrestrial Reference Frame - Latest Developments Horst Müller 16th International Workshop on Laser Ranging, Poznan, Poland, October
Principles of Sea Level Measurement Long-term tide gauge records  What is a tide station?  How is sea level measured relative to the land?  What types.
VieVS User Workshop 14 – 16 September, 2011 Vienna SPACECRAFT TRACKING Lucia Plank.
VieVS User Workshop 14 – 16 September, 2011 Vienna VIE_LSM Kamil Teke and Johannes Böhm.
Workshop, Miami, June 2008 ITRF2005 residuals and co-location tie issues Zuheir Altamimi IGN, France Some features of ITRF2005 residuals ITRF2005 vs IGS05.
IGS Analysis Center Workshop, Miami Beach, 2-6 June 2008 M. Fritsche, R. Dietrich, A. Rülke Institut für Planetare Geodäsie (IPG), Technische Universität.
© TU Darmstadt-IPG p 1 The CEGRN 2011 Campaign and the densification of ETRF2000 in Central Europe A. Caporali, M. Barlik, M. Becker, L. Gerhatova, G.
SRI Seminar 2005 Time series of GPS stations For reference, monitoring and geophysics Günter Stangl Federal Office of Metrology and Surveying.
1/17 REFAG Symposium 6 October 2010 – Marne-la-Vallée, France Recent Results from the IGS Terrestrial Frame Combinations __________________________________________________________________________________________________.
Space Geodesy (1/3) Geodesy provides a foundation for all Earth observations Space geodesy is the use of precise measurements between space objects (e.g.,
Tropospheric parameters from DORIS in comparison to other techniques during CONT campaigns Johannes Böhm (1), Kamil Teke (1, 2), Pascal Willis (3, 4),
IGS Analysis Center Workshop, 2-6 June 2008, Florida, USA GPS in the ITRF Combination D. Angermann, H. Drewes, M. Krügel, B. Meisel Deutsches Geodätisches.
1 AOGS 2012, Singapore, Aug 13-17, 2012 Surveying co-located GNSS/VLBI/SLR Stations In China Xiuqiang Gong, Yunzhong Shen, Junping Chen, Bin Wu Shanghai.
Background to >10 years of BIFROST activities Jan M. Johansson 1, Hans-Georg Scherneck 1, Rüdiger Haas 1, Sten Bergstrand 1 Martin Lidberg 1,2, Lotti Jivall.
Determination of seasonal geocenter variations from DORIS, GPS and SLR data.
SPACE GEODESY NETWORK & ITRF Z Minchul LEE 1.
An improved and extended GPS derived velocity field of the postglacial adjustment in Fennoscandia Martin Lidberg 1,3, Jan M. Johansson 1, Hans-Georg Scherneck.
AGU Fall meeting Quality assessment of GPS reprocessed Terrestrial Reference Frame 1 IGN/LAREG and GRGS 2 University of Luxembourg X Collilieux.
A comparison of the ability of artificial neural network and polynomial fitting was carried out in order to model the horizontal deformation field. It.
SNARF: Theory and Practice, and Implications Thomas Herring Department of Earth Atmospheric and Planetary Sciences, MIT
Prediction of Earth orientation parameters by artificial neural networks Kalarus Maciej and Kosek Wiesław Space Research Centre, Polish Academy of Sciences.
E. Tanir(1), V. Tornatore(2), K. Teke(3,4) (1) Dept. of Geodesy and Photogrammetry Engineering, Karadeniz Technical University, Turkey (2) Dept. of Hydraulics,
Assessment of Reference Frame Stability trough offset detection in GPS coordinate time series Dragan Blagojević 1), Goran Todorović 2), Violeta Vasilić.
Introduction Ian Thomas, Matt King, Peter Clarke, Nigel Penna, David Lavallée Global GPS Processing strategy Conclusions and Future Work The preliminary.
CEGRN 2015 Campaign A. Caporali (1), J. Zurutuza (1), O. Khoda (2), G. Stangl (3), M. Becker (4), M. Bertocco (1), L. Gerhatova (5), M. Mojzes (5), M.
1/16 ITRF2008-P: Some evaluation elements and impact on IGS RF products Paul Rebischung, Bruno Garayt, 16 April 2010 ITRF2008-P: SOME EVALUATION ELEMENTS.
VARIABILITY OF TOTAL ELECTRON CONTENT AT EUROPEAN LATITUDES A. Krankowski(1), L. W. Baran(1), W. Kosek (2), I. I. Shagimuratov(3), M. Kalarus (2) (1) Institute.
Reference Frame Theory & Practice: Implications for SNARF SNARF Workshop 1/27/04 Geoff Blewitt University of Nevada, Reno.
Combination of long time series of tropospheric parameters observed by VLBI R. Heinkelmann, J. Boehm, H. Schuh Institute of Geodesy and Geophysics, TU.
Technical Specifications for Monitoring Ground Displacements at a National Highway Project K. Lakakis, P. Savvaidis and I. Ifadis Laboratory of Geodesy.
Global VLBI Solution IGG05R01 1 Institute of Geodesy and Geophysics (IGG), Vienna, Austria 2 German Geodetic Research Institute (DGFI), Munich, Germany.
20 th Meeting of the European VLBI Group for Geodesy and Astrometry (EVGA), Bonn, Germany Wednesday, 28 th March 2011 EVGA – Looking back at the early.
03/000 Effect of the reference radiosource instability on the TRF solution Australian Government Geoscience Australia 4 th General IVS Meeting, 9-13, January,
03/000 VLBI network design Australian Government Geoscience Australia NGRS Workshop, 1-2 February, Canberra.
Österreichische Akademie der Wissenschaften (ÖAW) / Institut für Weltraumforschung (IWF), 8042 Graz, Austria, Contact:
Thessaloniki Continuous Reference GPS Station: Initial Estimation of Position P.Savvaidis, I. Ifadis, K. Lakakis Laboratory of Geodesy Department of Civil.
Do we need WVRs for geodetic VLBI? Joerg Wresnik (1), Johannes Boehm (1), Harald Schuh (1), Arthur Niell (2) Workshop on Measurement of Atmospheric Water.
IVS High Accuracy Products for the Maintenance of the Global Reference Frames as a Contribution to GGOS VLBI provides high accuracy and unique products.
Aug 6, 2002APSG Irkutsk Contemporary Horizontal and Vertical Deformation of the Tien Shan Thomas Herring, Bradford H. Hager, Brendan Meade, Massachusetts.
Armasuisse Swiss Federal Office of Topography swisstopo Determination of Tectonic Movements in the Swiss Alps using GNSS and Levelling E. Brockmann, D.
Terrestrial Reference Frame Effects on Global Sea Level Rise determination from TOPEX/Poseidon altimetric data Laurent Morel a, Pascal Willis b,c a Ecole.
NAPEOS: The ESA/ESOC Tool for Space Geodesy
Importance of SLR in the Determination of the ITRF Zuheir Altamimi IGN, France Geoscience Australia, Canberra, August 29, 2005 SLR Strength: its contribution.
Canada’s Natural Resources – Now and for the Future Reference Frames Panel Discussion M. Craymer Geodetic Survey Division, Natural Resources Canada IAG.
Contemporary Horizontal and Vertical Deformation of the Tien Shan
Reference Frame Representations: The ITRF from the user perspective
Satlevel Collocation Model for Adapting GEM 2008 to Regional Geoid: A case Study of Yanbu Industrial City in Saudi Arabia Kamorudeen Aleem Department of.
Vertical Land Movements in the Canary Island using Continuous GPS Time Series Analysis: First Results García-Cañada, Laura(1), Teferle, F. Norman(2),
SPACE GEODESY ACTIVITIES AT INSTITUTO GEOGRÁFICO NACIONAL (IGN), SPAIN
A global model for the conversion of ZWD to IWV
EMS Annual Meeting 2017 September 4-8, 2017 Dublin, Ireland
The need of a Local Reference Frame in Greece:
IVS contribution to the ITRF2014
Kamil Teke and Johannes Böhm
Multi-technique comparison of troposphere zenith delays and gradients during CONT08 Kamil Teke (1,2), Johannes Böhm(1), Tobias Nilsson(1), Harald Schuh(1),
Troposphere and Clock Parameterization During Continuous VLBI Campaigns Kamil Teke1, 2, Johannes Boehm1, Hana Spicakova1, Andrea Pany1, Harald Schuh1 1.
IDS workshop, Venice, Italy, September 2012
X SERBIAN-BULGARIAN ASTRONOMICAL CONFERENCE 30 MAY - 3 JUNE, 2016, BELGRADE, SERBIA EARTH ORIENTATION PARAMETERS AND GRAVITY VARIATIONS DETERMINED FROM.
Geophysical Institute, University of Alaska Fairbanks
Joint analysis of historic leveling data and permanent GPS observations for subsidence determination over the Netherlands R. Grebenitcharsky, R. Hanssen.
Geophysical Institute, University of Alaska Fairbanks
Correlation coefficients
Presentation transcript:

VLBI Estimates of Vertical Crustal Motion in Europe Emine TANIR (1) Kamil TEKE (2,3) Harald SCHUH (2) (1) Karadeniz Technical University, Dept. of Geomatics Engineering, Trabzon, TURKEY (2) Technische Universitaet Wien, Institut für Geodaesie and Geophysik, Wien, AUSTRIA (3) Hacettepe University, Dept. of Geodesy and Photog. Engineering, Ankara, TURKEY

aims of this study to detemine the vertical crustal motion in Europe by means of analysing European VLBI sessions carried out from 1990 to 2010 within the International VLBI Service for Geodesy and Astrometry (IVS), IVS-Europe. to compare IVS-Europe VieVS solution results with GNSS-EUREF solution. to compare our radial velocity estimates to those of the previous study carried out by Campbell et al., 2002, ITRF2005, and VTRF2008 velocities.

Selected VLBI and GNSS sites SVETLOE, 32 m Russia ONSALA, 20&25 m Sweden WETTZELL, 20 m Germany Zelenchukskaya, 32 m Russia MEDICINA, 32 m Italy NOTO, 32 m Italy

objectives of these IVS-Europe sessions are IVS-Europe sessions have been carried out regularly (6 to 12 sessions per year) since late 1989. objectives of these IVS-Europe sessions are to determine crustal motion in Europe to contribute providing a stable reference frame for Europe (ETRF) with other space geodetic techniques.

Data Analysis for Crustal Motion IVS European Sessions were analysed by the VieVS VLBI Analysis Software developed at Institut für Geodaesie und Geophysik of Technische Universitaet Wien. PRODUCED TIME SERIES After the estimation of the adjusted coordinates of the antennas at the respective time epochs, position time series of each antenna were produced. The determination of the VLBI station velocities was carried out by a least-squares fit of a first order polynomial to the position time series. LS ESTIMATION

LS Estimation -1 LINEAR FUNCTION Offset; difference between VTRF 2008 coordinates and new TRF coordinates at epoch 2000.0 ESTIMATED PARAMETERS Trend; velocity in global cartesian 2000.0 reference epoch Epochs of position estimates New TRF coordinates VTRF 2008 coordinates Post fit observational residuals

in global cartesian coordinate system Stations Velocities from IVS-Europe Sessions Analysis (cm/year) Velocities of ITRF 2005 Velocities of VTRF 2008 Vx Vy Vz MATERA -1.83 1.90 1.49 -1.80 1.89 1.55 -1.86 1.47 MEDICINA 1.87 1.11 -1.82 1.88 1.10 -1.79 1.13 WETTZELL -1.56 1.70 1.03 1.68 1.04 -1.57 ONSALA60 -1.38 1.46 1.08 -1.37 1.44 1.09 -1.40 1.06 SVETLOE -1.94 1.17 0.74 -1.68 1.43 0.88 1.22 0.83 NYALES20 0.73 1.05 -1.42 0.71 1.02 Table 1. VieVS solution velocity vectors of IVS-Europe Sessions and inter-technique combined TRF solutions of ITRF-2005 and VTRF-2008 (all solutions are at epoch 2000.0) in global cartesian coordinate system

latitude and longitude of station Conversion of from global cartesian coordinate system to the local topocentric coordinates latitude and longitude of station

LS Estimation -2 LINEAR FUNCTION ESTIMATED PARAMETERS Offset; difference between VTRF 2008 coordinates and new TRF coordinates at epoch 2000.0 Trend; velocity in local topocentric coordinate system 2000.0 reference epoch Parameter estimation epoch Post fit observational residuals

in local topocentric coordinate system Stations Velocities of IVS-Europe Session Analysis (cm/year) Velocities of ITRF 2005 (cm/year) Velocities of VTRF 2008 VNorth VEast VUp Vup MATERA 1.92 2.35 0.03 1.95 2.33 0.11 0.02 MEDICINA 1.77 2.20 -0.23 2.21 -0.19 WETTZELL 1.54 2.00 1.55 1.99 0.04 2.01 ONSALA60 1.47 1.71 0.35 1.69 0.36 1.70 0.32 SVETLOE 1.31 2.07 1.08 2.08 0.40 1.26 1.97 0.24 NYALES20 1.40 1.00 0.81 1.42 0.99 0.76 1.01 0.82 Table 3. IVS-Europe Sessions VieVS solution velocity vectors in north, east and radial directions in local topocentric coordinate system

in local topocentric coordinate system Comparison of estimated velocities from IVS-Europe sessions VieVS solution with those of corresponding ITRF 2005 and VTRF 2008 solutions Stations differences between IVS-Europe Sessions and ITRF 2005 (cm/year) IVS-Europe Sessions and VTRF 2008 VNorth VEast VUp Vup MATERA -0.03 0.02 -0.08 0.00 0.01 MEDICINA -0.01 -0.00 -0.04 WETTZELL ONSALA60 0.03 NYALES20 -0.02 0.04 Table 4. Differences between IVS-European Sessions VieVS solution velocity vectors in north, east and radial directions in local topocentric coordinate system

Parameter estimates are statistically significant… > Parameter estimates are statistically significant…

VieVS-TRF Solutions of IVS-Europe Sessions, VLBI Antenna: MEDICINA epoch 2000.0

VieVS-TRF Solutions of IVS-Europe Sessions, VLBI Antenna: NYALES20 epoch 2000.0

VieVS-TRF Solutions of IVS-Europe Sessions, VLBI Antenna: ONSALA60 epoch 2000.0

VieVS-TRF Solutions of IVS-Europe Sessions, VLBI Antenna: MATERA epoch 2000.0

VieVS-TRF Solutions of IVS-Europe Sessions, VLBI Antenna: WETTZELL epoch 2000.0

Radial velocity estimates from IVS-Europe VLBI solution coordinate time series

Radial velocity estimates from GNSS-EUREF solution coordinate time series

CALCULATION OF TRANSFORMATION PARAMETERS BETWEEN TRF SOLUTIONS translations scale rotations The transformation between two reference frames can be formulated as a Helmert transformation, e.g. an a priori reference frame (VTRF 2008, ITRF 2005) and the estimated network (IVS Europe Solution).

3D transformation between IVS- Europe Sessions VieVS Solution and ITRF 2005 at epoch 2000.0 Tx cm Ty Tz scale ppb alpha (mas) -2.9 11.6 0.0 0.4 0.9 3.1 0.8 3D transformation between IVS- Europe Sessions VieVS Solution and VTRF 2008 at epoch 2000.0 Tx cm Ty Tz scale ppb alpha (mas) 0.0 0.8 0.5 -0.8 0.1 -0.3

CONCLUSIONS Onsala and Ny-Alesund are rising at rates of 4 and 8 mm/year respectively, subsidence of Medicina is about 2mm/year, uplift motions of Wettzell and Matera below 1mm/year may not be significant, IVS-Europe sessions radial position time series estimated by VieVS software are compatible with the EUREF solution at co-located sites in direction and more or less in magnitude, The transformation parameters between IVS-Europe VieVS Solution and global TRF solutions (ITRF 2005 and VTRF 2008) are relatively larger to those of transformation parameters between different ITRF solutions due to mainly; fixing EOPs to their a priories and not estimating (in our solution) the VLBI sites contributing IVS-Europe sessions cover a regional area, Europe (only 1/3 of the northern hemisphere). Our results agree with those of the previous study done by Campbell et al., 2002, who were using the first 10 years of IVS-Europe sessions.

REFERENCES J. Campbell, R. Haas,A.Nothnagel (2002). Measurement of Vertical Crustal Motion in Europe, Research Networks Training and Mobility of Researchers, Geodetic Institute, University of Bonn, (on behalf of European Commission). Current Methodology for TRF Combination, IERS Technical Note, No.31. E. Tanir, V. Tornatore, K. Teke (2009). Analysis on the time series of the radio telescope coordinates of the IVS-R1 & R4 Sessions, Proceedings of the 19th European VLBI for Geodesy and Astrometry Working Meeting, edited by G. Bourda, P. Charlot, A. Collioud, Universite Bordeaux1-CNRS, 23-28 March 2009, Bordeaux, France, pp. 122-126, 2009. .

Thanks for your attention!!