Figure 1 Spine MRI, sagittal and axial views of patients with idiopathic transverse myelitis with VPS37A mutations Spine MRI, sagittal and axial views.

Slides:



Advertisements
Similar presentations
Figure Pedigrees of the SCA42 families identified in this study
Advertisements

Figure 2 ERG amplitude reduction in the follow-up study
Figure 2 Sanger sequencing, conservation, and summary of known ACO2 mutations Sanger sequencing, conservation, and summary of known ACO2 mutations (A)
Figure 1 Summary of prior diagnostic workup in neuromuscular disorder cases Summary of prior diagnostic workup in neuromuscular disorder cases Percentage.
Figure 3 Pedigree of familial idiopathic transverse myelitis
Figure 1 Box plot of the venous diameter in lesions
Figure 1 Brain MRI findings in the present case
Figure 2 Needle biopsy of the left vastus lateralis
Figure MRI of anti-MOG-IgG–associated myelitis
Figure 2 Spinal cord lesions
Figure 1 Coronal MRI images showing the evolution of white matter abnormality and atrophy of patient 1 Coronal MRI images showing the evolution of white.
Figure 1 Hierarchical clustering (HCL) outcome of all tested samples with the expression profile of the case report set as unknown Hierarchical clustering.
Figure Facial photograph during headache attack and brain and upper cervical cord MRI Facial photograph during headache attack and brain and upper cervical.
Figure 1 Treg percentage and suppressive function increased during each round of Treg infusions Treg percentage and suppressive function increased during.
Figure 3 Example of venous narrowing
Figure Immune checkpoint inhibitor–induced encephalitis before and after treatment with natalizumab Immune checkpoint inhibitor–induced encephalitis before.
Figure Pedigree of the family
Figure 1 Quantitative spinal cord MRI maps and segmentations
Figure 2 Luciferase assays of transiently transfected HEK 293 cells with reporter constructs containing the 766-bp wild-type KCNJ18 or c.-542 T/A mutant.
Figure 2 Correlation between total IgG levels and anti-AQP4 IgG titer
Figure 1 Dominant and recessive missense and nonsense variants in neurofilament light (NEFL)‏ Dominant and recessive missense and nonsense variants in.
Figure WDR45 sequence changes in patients A and B
Figure 3 Temporal trends in FALS incidence
Table 4 Associations in SNP array data between the Braak stage and previously known AD risk loci (341 variants) comparing participants with Braak stage.
Figure 1 All patients with pediatric genetic movement disorders, their genetic diagnoses, and type of genetic investigations All patients with pediatric.
Figure 5 Neurite structure is not disrupted by the lack of neurofilament light (NEFL)‏ Neurite structure is not disrupted by the lack of neurofilament.
Figure 2 Linkage analysis of chromosome 19
Figure 1 White matter lesion central vein visibility in MS and absence in small vessel disease (SVD)‏ White matter lesion central vein visibility in MS.
Figure 2 Example of venous narrowing
Figure 1 MRI of inflammatory myelitis before and after treatment
Figure 1 Illustration of white matter– and lesion-associated regions of interest (ROIs)‏ Illustration of white matter– and lesion-associated regions of.
Figure 2 DNA sequence analysis of VPS37A
Figure 1 Family pedigree and MRI
Table 2 Rs number, gene, OR, 95% CI, and permutation p value for the statistical significant variants resulted from allelic association analysis association.
Figure 1 Family pedigree and DNA sequencing results
Figure 4 Voltage-clamp recordings of KCNJ18 carrying the patient's SNVs expressed in Xenopus laevis oocytes under control conditions and after application.
Figure 1 [18F]florbetapir standardized uptake value ratio analytical method [18F]florbetapir standardized uptake value ratio analytical method Flowchart.
Figure 3 Voltage-clamp recording of the wild-type KCNJ18 (left) and the KCNJ18 carrying the patient's SNVs (right) expressed in Xenopus laevis oocytes.
Figure 1 Pedigree and genetic findings
Figure 1 Histamine flare in patients and controls
Figure 1 MRI findings over time
Figure 1 Considerations for concussed athletes leading to medical care or return to sport (RTS)‏ Considerations for concussed athletes leading to medical.
Figure 1 Brain MRI Brain MRI (A) Axial fluid-attenuated inversion-recovery images show perilesional edema in both cerebellar hemisphere and hypointense.
Figure 2 Global tau-PET distribution in familial prion disease mirrors the distribution seen in Alzheimer disease Global tau-PET distribution in familial.
Figure 2 Kaplan-Meier survival graphs for 10-year risks of overall and post-90-day recurrent ischemic stroke (IS) and death Kaplan-Meier survival graphs.
Figure 1 Stacked bar chart depicts the proportion of patients with diffusion-weighted imaging (DWI)+ and DWI− scans categorized by index event type TIA.
Figure 1 Annualized percentage brain volume change
Figure 2 BVL according to on-study disability worsening
Figure 2 Repopulation of CD19+ cells in low and high BSA patients and calculation of the BSA Repopulation of CD19+ cells in low and high BSA patients and.
Figure Spinal cord imaging (A, B) Sagittal and axial T2-weighted cervical spine MRI demonstrating hyperintensities in the central gray matter of patient.
Figure 1 bvFTD PINBPA network
Figure 2 Seizure outcomes
Figure 2 Overview of apheresis therapies
Yian Gu et al. Neurol Neuroimmunol Neuroinflamm 2019;6:e521
Ingo Kleiter et al. Neurol Neuroimmunol Neuroinflamm 2018;5:e504
Gitanjali Das et al. Neurol Neuroimmunol Neuroinflamm 2018;5:e453
Figure 2 Pedigrees of families and segregation analysis of variants c
Figure Serial brain MRI of the patient with encephalitis and spontaneous recovery accompanying IgLON5 autoimmunity Serial brain MRI of the patient with.
Figure 1 MRIs (case 1)‏ MRIs (case 1) An enlarging T2 lesion in the cerebral white matter near the angular gyrus and a new lesion in the left middle cerebellar.
Figure 2 MRIs (cases 2 and 3)‏
Figure 3 Within-group comparisons (before–after)‏
Figure 4 Patient 3 MRI evolution over time
Figure 1 Segmentation of the normal-appearing periependymal white matter Segmentation of the normal-appearing periependymal white matter The figure demonstrates.
Figure 2 Time from incident ADS event to MS diagnosis
Figure 4 Venn diagram for B-cell Sup proteins compared with proteins from exosome-enriched fractions from a human B-cell line Venn diagram for B-cell Sup.
Figure 3 A receiver operating characteristic curve of days to IVMP as a predictor of failure to regain 0.2 logMAR (20/30) vision (AUC 0.84, p < 0.001)‏
Figure 1 EDSS score (A), T2LV (B) and T1LV (C) courses in patients who experienced WNS after FTY withdrawal EDSS score (A), T2LV (B) and T1LV (C) courses.
Figure 1 Axial FLAIR brain MRI obtained on admission to the ICU demonstrated (A1) old hyperintense subcortical lesions (arrowhead), new superimposed on.
Figure (A and B) Effect of canakinumab in muscle strength measured in each patient as mean bilateral GF (A) and TMS (B) during the mean study period of.
Figure 1 MRIs MRIs (A and B) Axial FLAIR images of the brain demonstrate multifocal parenchymal lesions including the right hippocampus, right midbrain,
Presentation transcript:

Figure 1 Spine MRI, sagittal and axial views of patients with idiopathic transverse myelitis with VPS37A mutations Spine MRI, sagittal and axial views of patients with idiopathic transverse myelitis with VPS37A mutations (A) Sister 1 with idiopathic transverse myelitis (ITM) shows a T2 hyperintense lesion 38 years after the onset at T8/T9 (arrows). (B) Sister 2 with ITM shows an acute T2 hyperintense lesion at T4/T5 (arrows). (C) Unrelated patient with ITM shows an acute T2 hyperintense lesion at T3 (arrows). Maureen A. Mealy et al. Neurol Genet 2018;4:e213 Copyright © 2018 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.