Shufang Su • U. of Arizona

Slides:



Advertisements
Similar presentations
Ze-Peng Liu, Yue-Liang Wu and Yu-Feng Zhou Kavli Institute for Theoretical Physics China, Institute of Theoretical Physics, Chinese Academy of Sciences.
Advertisements

SuperWIMP Dark Matter Jonathan Feng University of California, Irvine UC Berkeley 11 October 2004.
Gravitino Dark Matter & R-Parity Violation M. Lola MEXT-CT (work with P. Osland and A. Raklev) Prospects for the detection of Dark Matter Spain,
WIMPs and superWIMPs Jonathan Feng UC Irvine MIT Particle Theory Seminar 17 March 2003.
Joe Sato (Saitama University ) Collaborators Satoru Kaneko,Takashi Shimomura, Masato Yamanaka,Oscar Vives Physical review D 78, (2008) arXiv:1002.????
Highly-Ionizing Particles in Supersymmetric Models John Ellis King’s College London & CERN.
27 Oct 08Feng 1 WIMPS AND THEIR RELATIONS Jonathan Feng University of California, Irvine 27 October 2008 MIT Nuclear and Particle Physics Colloquium.
Dark Matter: A Mini Review Jin Min Yang Hong Kong (杨 金 民)(杨 金 民) Institute of Theoretical Physics Academia Sinica, Beijing.
SuperWIMP Dark Matter Jonathan Feng University of California, Irvine University of Washington 4 March 2005.
WIMPs and superWIMPs Jonathan Feng UC Irvine SUGRA20 18 March 2003.
23 September 05Feng 1 COSMOLOGY AT COLLIDERS Jonathan Feng University of California, Irvine 23 September 2005 SoCal Strings Seminar Graphic: N. Graf.
SuperWIMP Cosmology and Collider Phenomenology Jonathan Feng University of California, Irvine SUSY04, Tsukuba 21 June 2004.
Discovery of Long-Lived The LHC Bryan Smith West Coast Theory Network University of California, Irvine 4 th May 2007 Work with Jonathan Feng,
4 Mar 08Feng 1 DARK MATTERS CaJAGWR Caltech-JPL 4 March 2008 Jonathan Feng UC Irvine.
WIMPS AND THEIR RELATIONS Jonathan Feng University of California, Irvine CIFAR, Mont Tremblant 7 March 2009 Work with Jose Ruiz Cembranos 1, Manoj Kaplinghat.
Sombrero Galaxy (M104, 46 M light years). Long-lived charged massive particle and its effect on cosmology Physics Department, Lancaster University Physics.
1 the LHC Jet & MET Searches Adam Avakian PY898 - Special Topics in LHC Physics 3/23/2009.
The LC and the Cosmos: Connections in Supersymmetry Jonathan Feng UC Irvine Arlington LC Workshop January 2003.
The LC and the Cosmos: Connections in Supersymmetry Jonathan Feng UC Irvine American Linear Collider Physics Group Seminar 20 February 2003.
SuperWIMP Dark Matter Jonathan Feng UC Irvine FNAL Theoretical Astrophysics Seminar 17 May 2004.
8 Oct 07Feng 1 THE SEARCH FOR DARK MATTER Jonathan Feng University of California, Irvine 8 October 2007 CSULB Colloquium Graphic: N. Graf.
20 June 06Feng 1 DARK MATTER AND SUPERGRAVITY Jonathan Feng University of California, Irvine 20 June 2006 Strings 2006, Beijing.
The Dark Universe Progress, Problems, and Prospects Jonathan Feng University of California, Irvine APS April Meeting, Denver 1 May 2004.
Feng 1 LHC PROSPECTS FOR COSMOLOGY Jonathan Feng University of California, Irvine COSMO 09, CERN 7 September 2009.
9 Oct 08Feng 1 DARK MATTERS 9 October 2008 Caltech Physics Colloquium Jonathan Feng UC Irvine.
REHEATING TEMPERATURE IN GAUGE MEDIATION MODELS AND COMPRESSED PARTICLE SPECTRUM Olechowski, SP, Turzynski, Wells (ABOUT RECONCILING SUPERSYMMETRIC DARK.
12 Apr 06Feng 1 RECENT PROGRESS IN SUSY DARK MATTER Jonathan Feng University of California, Irvine 12 April 2006 Texas A&M Mitchell Symposium Graphic:
19 Mar 099 Oct 08Feng 1 DARK MATTER CANDIDATES AND SIGNALS 19 March 2009 UCSC Physics Colloquium Jonathan Feng UC Irvine.
Quintessino model and neutralino annihilation to diffuse gamma rays X.J. Bi (IHEP)
SUSY Dark Matter Collider – direct – indirect search bridge. Sabine Kraml Laboratoire de Physique Subatomique et de Cosmologie Grenoble, France ● 43. Rencontres.
Masato Yamanaka (Saitama University) collaborators Shigeki Matsumoto Joe Sato Masato Senami arXiv: [hep-ph]Phys.Lett.B647: and Relic abundance.
Neutralino Dark Matter in Light Higgs Boson Scenario (LHS) The scenario is consistent with  particle physics experiments Particle mass b → sγ Bs →μ +
DARK MATTER CANDIDATES Cody Carr, Minh Nguyen December 9 th, 2014.
Right-handed sneutrino as cold dark matter of the universe Takehiko Asaka (EPFL  Niigata University) Refs: with Ishiwata and Moroi Phys.Rev.D73:061301,2006.
The Linear Collider and the Rest of the Universe Jonathan Feng University of California, Irvine ALCPG Victoria Meeting 28 July 2004.
Gamma rays annihilated from substructures of the Milky Way and Quintessino dark matter Bi Xiao-Jun Institute of High Energy Physics, Chinese Academy of.
SUSY in the sky: supersymmetric dark matter David G. Cerdeño Institute for Particle Physics Phenomenology Based on works with S.Baek, K.Y.Choi, C.Hugonie,
Dark Matter Detection in Space Jonathan Feng UC Irvine SpacePart 03, Washington, DC 10 December 2003.
Cosmology and Collider Physics - Focus on Neutralino Dark Matter - Masahiro Yamaguchi (Tohoku U.) 7 th ACFA LC Taipei Nov. 12, 2004.
Long-lived superpartners in the MSSM Alexey GLADYSHEV (JINR, Dubna / ITEP, Moscow) PROTVINO, December 25, 2008 PHYSICS OF FUNDAMENTAL INTERACTIONS PHYSICS.
Detecting metastable staus and gravitinos at the ILC Hans-Ulrich Martyn RWTH Aachen & DESY.
STAU CLIC Ilkay Turk Cakir Turkish Atomic Energy Authority with co-authors O. Cakir, J. Ellis, Z. Kirca with the contributions from A. De Roeck,
Stable SuperWeakly Interacting Massive Particles (SuperWIMPs) Fumihiro Takayama (Cornell/DESY) ~ Late decaying particles and the implications for astrophysical.
A Solution to the Li Problem by the Long Lived Stau
Dark Matter: A Mini Review
Shufang Su • U. of Arizona
Phenomenology of Twin Higgs Model
Shufang Su • U. of Arizona
Search for New Physics beyond the SM
MSSM4G: MOTIVATIONS AND ALLOWED REGIONS
PARTICLE DARK MATTER CANDIDATES
Shufang Su • U. of Arizona
Phenomenology of Twin Higgs Model
Phenomenology of Twin Higgs Model
GOLDILOCKS COSMOLOGY Work with Ze’ev Surujon, Hai-Bo Yu (1205.soon)
Supersymmetric Dark Matter
Shufang Su • U. of Arizona
Shufang Su • U. of Arizona
Testing the Standard Model and Beyond
Phenomenology of Twin Higgs Model
Shufang Su • U. of Arizona
SUSY WIMP and Collider Signatures
Dark matter annihilation and the Milky Way diffuse gamma
Collider signatures of gravitino dark matter with a sneutrino NLSP
SUSY SEARCHES WITH ATLAS
Gravitons and Dark Matter in Universal Extra Dimensions
Institute of Theoretical Physics, CAS
Sombrero Galaxy (M104, 46 M light years)
How Heavy can Neutralino Dark Matter be?
(Tokyo university, ICRR)
Presentation transcript:

Shufang Su • U. of Arizona SuperWIMP Dark matter in SUSY with a Gravitino LSP Shufang Su • U. of Arizona J. Feng, F. Takayama, S. Su hep-ph/0404198, 0404231

Why is the gravitino not usually considered as DM? - In supergravity, for mG » GeV – TeV ~ thG  v-1  (gravitional coupling)-2 (comparig to WIMP of weak coupling strength) v too small thG too big, overclose the Universe ~ However, gravitino can get relic density by other means SuperWIMP S. Su SWIMP

Outline SWIMP dark matter and gravitino LSP Constraints - SWIMP dark matter and gravitino LSP Constraints Late time energy injection and BBN NLSP  gravitino +SM particle slepton, sneutrino, neutralino - approach I: fix SWIMP=0.23 - approach II: SWIMP=(mSWIMP/mNLSP) thNLSP Collider phenomenology Conclusion S. Su SWIMP

WIMP  SWIMP + SM particle - FRT hep-ph/0302215, 0306024 WIMP 104 s  t  108 s SWIMP SM  Gravitino LSP  LKK graviton 106 S. Su SWIMP

SWIMP and SUSY WIMP SWIMP: G (LSP) WIMP: NLSP mG » mNLSP ~ SUSY case - SWIMP: G (LSP) WIMP: NLSP mG » mNLSP ~ SUSY case ~ Ellis et. al., hep-ph/0312262; Wang and Yang, hep-ph/0405186. 104 s  t  108 s NLSP  G + SM particles ~ neutralino/chargino NLSP slepton/sneutrino NLSP BBN EM had Brhad  O(0.01) Brhad  O(10-3) S. Su SWIMP

Constraints ~ NLSP  G + SM particles  Dark matter density G · 0.23 - ~ NLSP  G + SM particles  Dark matter density G · 0.23 ~ Approach I Approach II SWIMP close universe SWIMP maybe insiginificant nNLSP  SWIMP/mSWIMP1/mSWIMP  1/mSUSY thNLSP  v-1  m2SUSY  nNLSP  mSUSY NLSP: slepton,sneutrino neutralino : excluded NLSP: slepton, sneutrino, neutralino fix G = 0.23 ~ G = mG/mNLSP thNLSP ~ S. Su SWIMP

Constraints (cont’)  CMB photon energy distribution -  CMB photon energy distribution - early decay:  = 0 thermalized through e  e, eX  eX , e  e - late decay:   0 statistical but not thermodynamical equilibrium || · 9 £ 10-5 Fixsen et. al., astro-ph/9605054 Hagiwara et. al., PDG S. Su SWIMP

Constraints (cont’) ?  Big bang nucleosynthesis /10-10 = 6.1 0.4 Fields, Sarkar, PDG (2002) S. Su SWIMP

BBN constraints on EM/had injection - Decay lifetime NLSP EM/had energy release EM,had=EM,had BrEM,had YNLSP Cyburt, Ellis, Fields and Olive, PRD 67, 103521 (2003) EM EM (GeV) » mNLSP-mG ~ Kawasaki, Kohri and Moroi, astro-ph/0402490 had EM S. Su SWIMP

Decay lifetime Decay lifetime (sec) ~ ~ l  G + l,  ! G +  - Decay lifetime (sec) l  G + l,  ! G +  ~ B  G + /Z/h ~ S. Su SWIMP

EM.had and BrEM, had EM, had » mNLSP-mG EM/had branching ratio BrEM, had ~ neutralino slepton Sneutrino EM mode BrEM 1 had Brhad O(1) O(10-2 - 10-6) S. Su SWIMP

YNLSP: approach I approach I: fix G = 0.23 ~ slepton and sneutrino - approach I: fix G = 0.23 ~ slepton and sneutrino 200 GeV ·  m · 400 » 1500 GeV mG ¸ 200 GeV ~  m · 80 » 300 GeV apply CMB and BBN constraints on (NLSP, EM/had )  viable parameter space NLSP, EM,had=EM,had BEM,had YNLSP S. Su SWIMP

YNLSP: approach II approach II: G = (mG/mNLSP) thNLSP ~ - approach II: G = (mG/mNLSP) thNLSP ~ Approximately right-handed slepton sneutrino (left-handed slepton) neutralino “bulk” -“focus point/co-annihilation” S. Su SWIMP

Approach II: slepton and sneutrino - G = (mG/mNLSP) thNLSP ~ S. Su SWIMP

Approach II: bino - G = (mG/mNLSP) thNLSP ~ S. Su SWIMP

Distinguish from stau NLSP and gravitino LSP in GMSB Collider Phenomenology - SWIMP Dark Matter no signals in direct / indirect dark matter searches SUSY NLSP: rich collider phenomenology NLSP in SWIMP: long lifetime  stable inside the detector Charged slepton highly ionizing track, almost background free Distinguish from stau NLSP and gravitino LSP in GMSB GMSB: gravitino m » keV warm not cold DM collider searches: other sparticle (mass) (GMSB) ¿ (SWIMP): distinguish experimentally Feng and Smith, in preparation. S. Su SWIMP

Sneutrino and neutralino NLSP - sneutrino and neutralino NLSP missing energy signal: energetic jets/leptons + missing energy  Is the lightest SM superpartner sneutrino or neutralino? angular distribution of events (LC) vs.  Does it decay into gravitino or not? sneutrino case: most likely gravitino is LSP neutralino case: most likely neutralino LSP direct/indirect dark matter search positive detection  disfavor gravitino LSP precision determination of SUSY parameter: th, ~ ~ ,  0.23  favor gravitino LSP ~ S. Su SWIMP

Conclusions SuperWIMP is possible candidate for dark matter - SuperWIMP is possible candidate for dark matter SUSY models SWIMP: gravitino LSP WIMP: slepton/sneutrino/neutralino Constraints from BBN: EM injection and hadronic injection need updated studies of BBN constraints on hadronic/EM injection Favored mass region Approach I: fix G=0.23 Approach II: G = (mG/mNLSP) thNLSP Rich collider phenomenology (no direct/indirect DM signal) charged slepton: highly ionizing track distinguish from GMSB sneutrino/neutralino: missing energy stable or not? ~ ~ ~ S. Su SWIMP

SM energy distribution  Mpl Decay life time SM energy distribution  Mpl  mG  SUSY breaking scale ~ SM NLSP ~ G NLSP SM SM NLSP ~ G Capture particle: Goity, Kossler and Sher, hep-ph/9305244 ~ G SM NLSP NLSP SM ~ G Supergravity at colliders Buchmuller et. al. hep-ph/0402179 ~ G SWIMPs and slepton traps Feng and Smith In preparation… S. Su SWIMP

Slepton trapping (from J. Feng) - Slepton could live for a year, so can be trapped then moved to a quiet environment to observe decays LHC: 106 slepton/yr possible, but most a fast. By optimizing trap location and shape, can catch » 100/yr in 1000m3 water LC: tune beam energy to produce slow sleptons, can catch 1000/yr in 1000m3 water Courtesy of J. Feng S. Su SWIMP

Frequently asked question

Something about  lepton -   G +, ~   mesons, induce hadronic cascade meson decay before interact with BG hadrons longer than typical meson (, K) lifetime (E/m)£ 10-8 s S. Su SWIMP