Presentation is loading. Please wait.

Presentation is loading. Please wait.

Phenomenology of Twin Higgs Model

Similar presentations


Presentation on theme: "Phenomenology of Twin Higgs Model"— Presentation transcript:

1 Phenomenology of Twin Higgs Model
Shufang Su • U. of Arizona Hock-Seng Goh, Shufang Su Work in progress

2 Outline Twin Higgs Model Collider phenomenology Twin Higgs mechanism
- Twin Higgs Model Twin Higgs mechanism Left-right Twin Higgs model New particles and model parameters Collider phenomenology Heavy top quark Heavy gauge bosons Higgses S. Su

3 Twin Higgs mechanism Mirror symmetry Left-right symmetry
Higgs as pseudo-Goldstone boson of a global symmetry Its mass is protected against radiative corrections Little Higgs mechanism: collective symmetry breaking Twin Higgs mechanism: discrete symmetry Mirror symmetry Type IA TH: Chacko, Goh, Harnik, hep-ph/ Type IB TH: Chacko, Nomura, Papucci, Perez, hep-ph/ Left-right symmetry Type II TH: Chacko, Goh, Harnik, hep-ph/ S. Su

4 SU(2)L  SU(2)R  U(1)B-L  SU(2)LU(1)Y
Left-right Twin Higgs model - Global U(4) , with subgroup SU(2)L  SU(2)R  U(1)B-L gauged Left-right symmetry: gL=gR (yL=yR) A linear realization SM Higgs doublet EWSB SM neutral Higgs: H 3 eaten by heavy gauge bosons U(4)  U(3) SU(2)L  SU(2)R  U(1)B-L  SU(2)LU(1)Y 7 GB S. Su

5 Twin Higgs mechanism - Quadratic divergence forbidden by left-right symmetry gL=gR=g U(4) invariant, does not contribute to the mass of GB Non-linear realization Log contribution: mH  g2f / (4 ), natural for f  TeV S. Su

6 Left-right Twin Higgs model
Fermion sector: Top quark mass: Top quark mass eigenstates: SM top and tH EW precision constraints on SU(2)R gauge boson mass  f  2 TeV Introduce another Higgs field that only couples to gauge sector Which has a larger VEV S. Su

7 SU(2)L  SU(2)R  U(1)B-L  SU(2)LU(1)Y
Left-right Twin Higgs model U(4)  U(4), with gauged SU(2)LSU(2)RU(1)B-L + LR symmetry - Couple to gauge boson only SM Higgs doublet EWSB SM neutral Higgs: H SU(2)L Higgs doublet H1, H20 3 eaten by heavy gauge bosons Left 3 Higgses: neutral Higgs 0, charged Higgs  U(4)  U(3) SU(2)L  SU(2)R  U(1)B-L  SU(2)LU(1)Y  U(4)  U(3) 7 GB 7 GB f2  f1 S. Su

8 New particles Heavy gauge bosons: WH, ZH m2WH,ZH  g2(f12+f22)
- Heavy gauge bosons: WH, ZH m2WH,ZH  g2(f12+f22) Heavy top: tH m2TH  M2+y2f12 Other SU(2)R Higgses:  m2  g4/(162)f22 log(/gf2) 0 m20  B (f2/f1) B: small, ( GeV)2 Other SU(2)L Higgs H1 m2H1, H20   H20 : soft symmetry breaking, O(f1) S. Su

9 Model parameters Model parameters: f1, (f2, y), , M, B, 
- Model parameters: f1, (f2, y), , M, B,  Determine particle masses and interactions fixed by Higgs VEV = 4f1 or 2f1 M=150 GeV B=50 GeV  = f1/2 fixed by top quark mass S. Su

10 Heavy top tH production
- single heavy top production heavy top pair production S. Su

11 Heavy top tH decay 3 b + 1 j + 1 lepton + missing ET j  l t tH W
- j W tH  b t l 3 b + 1 j + 1 lepton + missing ET j tH W b l 1 b + 1 j + 1 lepton + missing ET S. Su

12 Heavy gauge boson production
- Drell-Yan process S. Su

13 ZH decay - ZH 2 b + 2 j + 1 lepton + missing ET t q b W l ZH S. Su

14 WH decay WH tH b: 4b + 1 lepton + missing ET
- WH tH b: 4b + 1 lepton + missing ET tH bW : 2b + 1 lepton + missing ET tH tZ: 2b + 3 lepton + missing ET S. Su

15 Higgses SM Higgs mH  150-170 GeV, depending on f1,  and M
Higgs searches: gg  H  ZZ*  llll gg  H  WW*  ll WBF  qqH  qqWW*  qqll SU(2)R Higgs: 0,  0  bb j   tb 2b + 1 lepton + missing ET S. Su

16 0 Neutral Higgs 0 gg  0  bb, QCD background overwhelming
- Neutral Higgs 0 gg  0  bb, QCD background overwhelming no W0, Z0 associated production (no such coupling) bb0 , tb0, tt0 cross section small Produced via the decay of heavy particles WH  b t W 0 l 4 b + 1 lepton + missing ET S. Su

17  - Neutral Higgs  no W, Z associated production (no such coupling) bb , tb, tt cross section small Produced via the decay of heavy particles j W tH  b t l 3 b + 1 j + 1 lepton + missing ET S. Su

18 H1, H20 H20: good dark matter candidates
- Higgs that couple to gauge boson only: H1, H20 H1H20, H1H1, H20H20, associated production (small) H20 stable : missing energy H1  H20 + soft jets/leptons if decay fast enough: appears as missing energy if decay slow: track ! H20: good dark matter candidates S. Su

19 M=0 case Top Yukawa: f1 v tH = (TL, tR), mtH = yf1
- Top Yukawa: f1 v tH = (TL, tR), mtH = yf1 tSM = (tL, TR), mt = yv Gauge coupling Yukawa coupling 0  tH  tH 0  t  t 0  tH  t H  t  t H  tH  tH (small) H  tH  t W  t  b W  tH  b WH  t  b WH  tH  b Z  t  t Z  tH  tH Z  tH  t ZH  t  t ZH  tH  tH ZH  tH  t   tH  b   t  b   t + b (100%) X S. Su

20  decay No two body decay Leading decay: 3 body
- No two body decay Leading decay: 3 body off-shell 0  bb: bbqq final states huge QCD bg H  ZZ*, WW* small signal S. Su

21  discovery - Difficult unless   Hqq small signal S. Su

22 0 discovery - difficult small signal absent S. Su

23 Heavy top tH discovery single, pair production does not change much.
- single, pair production does not change much. decay: only tH  b  (100%) 100% either huge QCD bg Or small signal absent S. Su

24 Heavy gauge boson discovery
- ZH, WH drell-yan cross section does not change ZH: ZH  ll does not change much  Br(ZH  t tH) =0 WH: difficult For M=0 discovery of almost all the particle are difficult except for ZH either huge QCD bg Or small signal absent S. Su

25 Conclusions - Left-right twin Higgs model: Higgs as pseudo-goldstone boson quadratic divergence forbidden by left-right symmetry New particles Heavy gauge boson: WH, ZH Heavy top quark tH New Higgses: 0, , H1, H20 (DM) M0: rich collider phenomenology M=0: difficult except for ZH Future work Pick certain channel for detailed study: background, cuts,… Identify twin Higgs mechanism Dark matter study Comparison with other models, e.g., little higgs S. Su


Download ppt "Phenomenology of Twin Higgs Model"

Similar presentations


Ads by Google