Variable Mode High Acceptance Spectrometer

Slides:



Advertisements
Similar presentations
Decay- and in-beam spectroscopy of heavy nuclei at the proton dripline Triple-shape coexistence.
Advertisements

Ion beam Analysis Joele Mira from UWC and iThemba LABS Tinyiko Maluleke from US Supervisor: Dr. Alexander Kobzev Dr. Alexander Kobzev.
Ion Beam Analysis techniques:
Bordeaux Meeting June 6-7th, 2005 Meeting starts at 2:30 pm, Monday June 6th 1)Summary of EURONS meeting (February 2005, Madeira) 2)Discussion of ACTAR.
Detecting Giant Monopole Resonances Peter Nguyen Advisors: Dr. Youngblood, Dr. Lui Texas A&M University Energy Loss Identifying The Particles Discovered.
Direct Reactions at Eurisol In the light of the TIARA+MUST2 campaign at GANIL B. Fernández-Domínguez.
Direct Reactions at Eurisol In the light of the TIARA+MUST2 campaign at GANIL B. Fernández-Domínguez.
Status of TACTIC: A detector for nuclear astrophysics Alison Laird University of York.
1 An Introduction to Ion-Optics Series of Five Lectures JINA, University of Notre Dame Sept. 30 – Dec. 9, 2005 Georg P. Berg.
Possibility of bringing TRI  P to HIE-ISOLDE Dual magnetic Spectrometer Olof TENGBLAD ISCC Oct. 22nd 2013 There will be a presentation during the ISOLDE.
Fragment Mass Analyzer Darek Seweryniak, ANL C. N. Davids et al., Nucl. Instrum. Meth., B 70, 358 (1992).
The Schrödinger Model and the Periodic Table. Elementnℓms H He Li Be B C N O F Ne.
R&D for R3B/EXL silicon spectrometers, ELISe in-ring instrumentation based on planar Si and CVDD Alexander Gorshkov Flerov Laboratory of Nuclear Reactions.
ExternalTargetFacility at CSR FRIB-China East Lansing Sun, Zhiyu Institute of Modern Physics, CAS.
N. Saito The RISING stopped beam physics meeting Technical status of RISING at GSI N. Saito - GSI for the RISING collaboration Introduction Detector performance.
Recoil Separator Techniques J.C. Blackmon, Physics Division, ORNL RMS - ORNL WF QT QD Q D Target FP ERNA - Bochum WF Target D QT FP DRS ORNL QD VF D VAMOS.
Development of slowed down beams at GSI P.Boutachkov GSI Physics objectives Proposed solution Test experiments Future Test setup for slowed down beams.
Heavy Ion Laboratory Warsaw University Jarosław Choiński.
The Current Atomic Model
Direct Reactions with ORRUBA and GRETINA Steven D. Pain Oak Ridge National Laboratory GRETINA Workshop, ANL, February 2013.
Shape Evolution and Shape Coexistence in Neutron Rich A~100 Nuclei
 -capture measurements with the Recoil-Separator ERNA Frank Strieder Institut für Physik mit Ionenstrahlen Ruhr-Universität Bochum HRIBF Workshop – Nuclear.
Lewis Electron Dot Diagrams. Valence Electrons Electrons found in the outermost energy level of an atom Usually involved in chemical changes Lewis Electron.
R&D on complementary detectors and devices for nuclear structure and reaction mechanism studies R&D on complementary detectors and devices for nuclear.
 2-proton emission  experimental set-up  decay results  2p emission from 45 Fe  perspectives Jérôme Giovinazzo – CEN Bordeaux-Gradignan – France PROCON’03.
Atomic Structure Test Review 166 point total. 1.The atomic number is the number of protons. 2. The mass number is the number of protons and neutrons.
Lecture 9: Inelastic Scattering and Excited States 2/10/2003 Inelastic scattering refers to the process in which energy is transferred to the target,
Review of synthesis of super heavy elements: reactions, decays and characterization. Experimental Setup of MASHA. Results of first experiments. study.
NS08 MSU, June 3rd – 6th 2008 Elisa Rapisarda Università degli studi di Catania E.Rapisarda 18 2.
FAIR (Facility for Antiproton and Ion Research) (Darmstadt, Germany) low-energy cave MeV/u fragmentation/fission ~1GeV/u fragment separator 350m.
Production of Beams: - Stable beams from Be-U, 48 Ca ~ pps, 238 U ~ pps ~60 A.MeV for Ni -RIB in-target fragmentation Noble gas (i.e. 6 He.
J-PARC でのハイパー核ガンマ線分光実験用 散乱粒子磁気スペクトロメータ検出器の準備 状況 東北大理, 岐阜大教 A, KEK B 白鳥昂太郎, 田村裕和, 鵜養美冬 A, 石元茂 B, 大谷友和, 小池武志, 佐藤美沙子, 千賀信幸, 細見健二, 馬越, 三輪浩司, 山本剛史, 他 Hyperball-J.
Test of PRISMA in Gas Filled Mode B.Guiot for PRISMA collaboration INFN – Laboratori Nazionali di Legnaro.
REQUIREMENTS for Zero-Degree Ion Selection in TRANSFER Wilton Catford University of Surrey, UK & SHARC collabs.
Relative energy levels of electrons in gaseous atoms of the first twenty elements Increasing energy s p d f 1s Electronic Structure Energy levels within.
VAMOS « Hot » results and perspectives * Spectroscopy of n-rich nuclei produced by fission * New gas-filled spectrometer-separator for fusion Getting ready.
A realistic simulation of the AGATA Demonstrator +PRISMA Spectrometer Elif INCE, Istanbul University 7 th AGATA Week, July 2008.
The experimental evidence of t+t configuration for 6 He School of Physics, Peking University G.L.Zhang Y.L.Ye.
Jun Chen Department of Physics and Astronomy, McMaster University, Canada For the McMaster-NSCL and McMaster-CNS collaborations (5.945, 3+ : **) (5.914,
Nuclear shape evolution through lifetime measurement in neutron rich nuclei Lucie Grente Colloque GANIL 2013 CEA Saclay, France DSM/IRFU/SPhN September.
Ancillary/Complementary detectors for the AD at LNL.
Fusion excitation measurement for 20 O + 12 C at E/A = 1-2 MeV Indiana University M.J. Rudolph, Z.Q. Gosser, K. Brown ✼, D. Mercier, S. Hudan, R.T. de.
Design and performance of Active Target GEM-TPC R. Akimoto, S. Ota, S, Michimasa, T. Gunji, H. Yamaguchi, T. Hashimoto, H. Tokieda, T. Tsuji, S. Kawase,
Focal plane detector discussion Kwangbok Lee Low Energy Nuclear Science team Rare Isotope Science Project Institute for Basic Science July 11,
STATUS REPORT ON THE “MASHA” SET-UP A.M.Rodin, A.V.Belozerov, S.N.Dmitriev, Yu.Ts.Oganessian, R.N.Sagaidak, V.S.Salamatin, S.V.Stepantsov, D.V.Vanin PAC.
of very neutron deficient heavy nuclei
FAST IN-MEDIUM FRAGMENTATION OF PROJECTILE NUCLEI
Efficient transfer reaction method with RI BEams
Jose Javier Valiente Dobón LNL (INFN)
INDRA: Identification de Noyaux et Détection avec Résolutions Accrues
IF Separator Design of RAON
A.Gadea (IFIC, CSIC-University of Valencia)
Event Reconstruction and Data Analysis in R3BRoot Framework
Prototype production and test
DSSSD for b decay investigations of heavy neutron-rich isotopes
Peripheral collisions Hans-Jürgen Wollersheim
Vamos + Exogam Spectrometer
MINOS: a new vertex tracker for in-flight γ-ray spectroscopy
1. Introduction Secondary Heavy charged particle (fragment) production
Ch. THEISEN – CEA Saclay MUSETT: the segmented Si array for the focal plane of the VAMOS spectrometer Ch. THEISEN – CEA Saclay.
Electronic Structure Work through this tutorial in sequence, or go directly to the section required using the links below. Use the ‘home’ button (to.
(Lawrence Berkeley National Laboratory)
CNS Active Targets for Missing Mass Spectroscopy with RI beams Tomohiro Uesaka CNS, University of Tokyo ・ Missing Mass Spectroscopy ・ Two different.
Recent Highlights and Future Plans at VAMOS
Physics cases for tracking
CNS Active Targets for Missing Mass Spectroscopy with RI beams Tomohiro Uesaka CNS, University of Tokyo ・ Missing Mass Spectroscopy ・ Two different.
Heavy Ion Laboratory Warsaw University Eryk Piasecki.
Status and perspectives of the LNS-FRIBS facility
Coincidence measurement of heavy ion and protons with SAMURAI
Presentation transcript:

Variable Mode High Acceptance Spectrometer Detection and Tracking in VAMOS

Studies with Vamos Measures : - Bρ In dispersive mode - angular distributions In dispersive mode - direct transfer reactions: 24Ne(d,3Heγ…), 26Ne(d,pγ…), 56Ni(d,pγ) - multi nucleon transfer/deep inelastic reactions: 48Ca + 238U - fusion reactions: 76Kr + 58Ni In non-dispersive mode - fusion reactions: 18O + 208Pb

VAMOS Spectrometer Schematic View QUADRUPOLES EXOGAM BEAM Focal Plane detection at 60° DIPOLE Velocity Filter

VAMOS in reality

VAMOS Measurement (dispersive mode) Resolution Θ 0.1° Φ 0.3° Bρ 0.5% M/q 0.5% q 1/30 M 1/200 Z 1/30 φf θf V Bρ M/q M q Z φ θ Yf Xf TOF ΔE E M/q ~ Bρ x TOF M ~ E x TOF2 Z2 ~ E x ΔE ~ ΔE/TOF2

Light/Fast Ion Detection Dispersive Plane Drift Chamber X: charge distribution 2 x 64 pads (6.3x50) mm XFWHM ~200 μm Y: drift time YFWHM ~ 500 μm Ionisation Chamber 2 x 7 pads (50x50) mm 1 x 7 pads (50x 170)mm ΔEFWHM ~ 3% Plastic Detector EFWHM ~ 4% Silicon Wall

Light/Fast Ion Detection Dispersive Plane Drift Chamber Plastic Detector Ionisation Chamber

Heavy/Slow Ion Detection Ionisation Chamber Secondary electron Detector Se-D XFWHM ~ 1 mm YFWHM ~ 2 mm TFWHM ~ 300 ps Mylar emissive foil

Very heavy/slow Ion Detection – non dispersive Secondary electron Detector Silicon Wall QQWFD Mode

Examples Recoil Tagging – non dispersive Deep inelastic - dispersive 40Ca at 13.7 MeV/u + natTa 238U at 5.5 MeV/u + 48Ca

Very-heavy systems: RT and RDT Test experiment : Asymmetric reaction 208Pb(18O,4n)222Th

Energy loss versus ToF

Recoil Tagging

Recoil Decay Tagging

Deep Inelastic Collisions measured with VAMOS 40Ca at 13.7 MeV/u + natTa

Energy Loss versus Energy Ca Ar S Si Mg Ne O C Be K Cl P Al Na F N B Li

Charge versus Proton Number Ca Ar S Si Mg Ne O

Mass versus Mass/Charge All charge states

Mass versus Mass/Charge 40Ca 41Ca 42Ca 36Ar 32S 28Si 24Mg 20Ne 160 One electron Fully stripped Two electrons

Mass Peux faire en redressant Possible d’améliorer avec mesure de temps de vol

Deep Inelastic Collisions (inverse kinematics) 238U at 5.5 MeV/u + 48Ca

Online spectra of 50Ca 50Ca 49Ca 48Ca Tres preliminaire, calib pas faite encore ONLINE

Continuation - Experimentally explore the limits of the existing setup to fully identify the nuclei within the M, Z, Q and E coordinates - Recoil Decay Tagging To be obtained by - Short runs with the deep inelastic reactions induced by Ni, Ge, Kr … beams Include ΔE measurement of nuclei stopped in gas Improve the ToF resolution that limits the M/Q measurement Tof : detecteur start (par exemple apres QQ) Resolution spectro = 1/1000. Limite actuelle = detection

How to improve ? M/q ~ Bρ x TOF M ~ E x TOF2 Z2 ~ E x ΔE ~ ΔE/TOF2 Bρ : spectrometer resolution ~1/1000  Improve algorithm (easy) ToF : ~ 1/100 (versus HF)  « start » detector, e.g. in the W.F. E : Plastic  Silicon ΔE : silicon detector ?

The MUSETT project MUr de Silicium pour l’Etude des Transfermium par Tagging (Silicon Wall for Transfermium Studies using Tagging) Goals: Detection of very-heavy/slow ions for RDT Improved detection for light ions (transfer, deep inelastic)

MUSETT Configurations Musett + SeD RDT Z,A identification (transfer, deep inelastic) Musett + CHIO CHIO+SeD 40x10cm 4x128x128 strips

Specifications Granularity (Decay tagging, ray tracing) Size (Focal plane coverage) Energy resolution (Alpha spectroscopy, identification) Window-less (Slow and heavy ions) Low noise and compact electronics (ASICs) Fast readout

MUSETT : Cost and planning 2006 : detector prototype; tests with existing electronics 2007-2008 : full setup (4 det.) with ASICs electronics Cost : ~220 k€

Summary Dispersive mode : transfer, deep-inelastic SeD, Drift chamber, CHIO, SiWall Non dispersive : very-heavy elements Asymmetric reactions, SeD, SiWal Developments : Improved ToF (dispersive Mode) MUSETT : RDT; A,Z,Q identification