Presentation is loading. Please wait.

Presentation is loading. Please wait.

INDRA: Identification de Noyaux et Détection avec Résolutions Accrues

Similar presentations


Presentation on theme: "INDRA: Identification de Noyaux et Détection avec Résolutions Accrues"— Presentation transcript:

1 INDRA: Identification de Noyaux et Détection avec Résolutions Accrues
17 rings 2o-176o 336 telescopes 90% of 4π Z=1-90 A for H, He, Li, Be low detection thresholds: 0.8 A.MeV for Z≤12 and ~1.3 A.MeV above Phoswich for 2o≤θ≤ 3o and now Si-CsI Ion. Chamb.-Si-CsI(Tl) for 3o≤θ≤45o Ion. Chamb.-CsI for 45o<θ≤176o

2 The INDRA data base on multifragmentation
1ère campagne 2ème campagne 3ème campagne 4ème campagne 5ème campagne 36Ar+58Ni 32, 40, 52, 63, 74, 84, 95 A.MeV 58Ni+58Ni 32,40, 52, 63, 74, 82, 90 A.MeV 12C+24Mg 53.2, 95 A.MeV 12C+112Sn 300, 600, 1000 A.MeV 12C+124Sn 300, 600 A.MeV 129Xe+27Al 18 A.MeV 36Ar+KCl 32, 40, 52, 74 A.MeV 58Ni+197Au 32, 52, 63, 74, 82, 90 A.MeV 12C+124Sn 95 A.MeV 12C+112Sn 95 A.MeV 12C+197Au 95, 300, 600, 1000, 1800 A.MeV 129Xe+58Ni 8 A.MeV 129Xe+ natSn 25, 32, 39, 45, 50 A.MeV 181Ta+197Au 32.8, 39.6 A.MeV 107Ag+58Ni 52 A.MeV 129Xe+natSn 50 A.MeV 129Xe+124Sn 80, 100, 150, 250 A.MeV 129Xe+112Sn 100 A.MeV 124Xe+112Sn 32, 45 A.MeV 124Xe+124Sn 32 A.MeV 129Xe+natSn 8, 12, 15, 18, 20, 25, 27, 29, 35 A.MeV 136Xe+112Sn 32, 45 A.MeV 136Xe+124Sn 32, 45 A.MeV 155Gd+238U 36 A.MeV 181Ta+238U(12C) 32.8, 39.6 A.MeV 58Ni+natAg 52 A.MeV 197Au+ 197Au 40, 60, 80, 100, 150 A.MeV 136Xe+197Au 32 A.MeV 129Xe+197Au 15, 18, 27, 35 A.MeV 238U+238U 24 A.MeV 93Nb+27Al 30 A.MeV 197Au+58Ni 100 A.MeV 208Pb+58Ni 28.8 A.MeV 93Nb+24Mg 30 A.MeV 12C+238U 1000 A.MeV 208Pb+124Sn 28.8 A.MeV 93Nb+116Sn 30 A.MeV 208Pb+197Au 28.8 A.MeV 116Sn+93Nb 25, 30 A.MeV

3 INDRA: Identification de Noyaux et Détection avec Résolutions Accrues
Experimental case: 5 campaigns of measurements (4 in Ganil-France + 1 at GSI-Germany) versatile detector: coupling with first Chimera ring, with other telescopes for time of flight measurements, position sensitive detectors for crystal blocking experiments (fission of SHE), spectrometer (Vamos) Symmetric-asymmetric systems, reverse & direct kinematic, Ebeam~5A.MeV to 1A.GeV Well suited for central collisions of symmetric systems but some drawbacks for asymmetric one when C.M. velocity is small (especially at backward angles) Physical results: physical analysis on: vaporization of QP, fission, central collisions of fusion-like sources, deexcitation studies for a large range of hot nuclei, mid rapidity emission, neck formation… intra-event correlations: b estimation, reaction plane determination, calorimetry, reconstruction of hot primary fragments… Phase transition: temperature, heat capacity, Δscaling, scaling laws, bimodality, spinodal decomposition… Reaction mechanism: mid-rapidity, neck, fusion like event, fission, momentum transfer, fragment formation, isospin equilibration, chronometer of the process… Deexcitation of hot nuclei: from evaporation to vaporization, fission and multifragmentation of any kind Comparison with model: statistical as well as dynamical

4 GARFIELD: General ARray for Fragment Identification and for
Emitted Light particles in Dissipative collisions General characteristics High granularity (400 ΔE-E telescopes  4o-150o ) Low energy thresholds (ionization chambers as ΔE) A and Z identification (1≤Z≤8) up to  90o Digital electronics for pulse-shape discrimination Ion. Chamb. Si CsI The Garfield drift chamber 180 Double Stage E (CsI(Tl)) - DE (MSGC) telescopes Angular coverage: (30o – 85o ; 95o – 150o) Charge resolution from p to heavy-ions, with DZ/Z=1/28 Angular resolution (Δθ=1° Δφ= 7.5 °) Side detectors from Multics

5 32S + 58Ni at 11 AMeV Multi fragment production α-α
GARFIELD: General ARray for Fragment Identification and for Emitted Light particles in Dissipative collisions 32S + 58Ni at 11 AMeV Multi fragment production Fizika B12 (2003) 39 32S + 58,64Ni at 14.5 AMeV α-α Evaporation residue Mass identification Correlation functions Phase transition in strongly interacting matter, Prague 2004 – Nucl. Phys. (to be published) 5th Italy-Japan Symposium – Naples 2004 – (to be published)

6 Multics + Miniball 87% of 4π Multics telescopes Beam hole Multics
3 layers telescopes: Si-500 μm position sensitive CsI(Tl) + photodiode 3o≤θlab≤25o Energy threshold ~1.5 A.MeV Z identification up to the beam charge Miniball 171 phoswich detectors 25o≤θlab≤160o Energy threshold ~2-3-4 A.MeV for Z= ~Z=20 identification isotopic identification for Z=1-2

7 Critical behavior inside the coexistence region
Results of the Multics+Miniball experiment Nucl. Phys. A 724 (2003) 455 Nucl. Phys. A 650 (1999) 329 Phys. Lett. B 473 (2000) 219 Nucl. Phys. A 699 (2002) 795) Nucl. Phys. A 734 (2004) 512 Au Liquid-Gas     εc eV E*/A (A.MeV) Liquid-drop Critical behavior inside the coexistence region Z B I G Asym 12 Phase transition in strongly interacting matter, Prague 2004 – Nucl. Phys. (to be published) 5th Italy-Japan Symposium – Naples 2004 – (to be published)

8 FAZIA: Four π A-Z Indentification Array
half forward part ~6000 telescopes: Si-ntd/Si-ntd/CsI possibility of coupling with other detectors like spectrometer, gas chamber, neutron detectors ~1000 hits/s maximum multiplicity ~150/event complete Z identification and A up to ~30 digital electronics for pulse-shape discrimination


Download ppt "INDRA: Identification de Noyaux et Détection avec Résolutions Accrues"

Similar presentations


Ads by Google