Tribological and material properties for cartilage of and throughout the bovine stifle: support for the altered joint kinematics hypothesis of osteoarthritis 

Slides:



Advertisements
Similar presentations
Anatomical alignment, but not goniometry, predicts femorotibial cartilage loss as well as mechanical alignment: data from the Osteoarthritis Initiative 
Advertisements

Biomechanical, biochemical and structural correlations in immature and mature rabbit articular cartilage  P. Julkunen, T. Harjula, J. Iivarinen, J. Marjanen,
Where does meniscal damage progress most rapidly
Novel optical imaging technique to determine the 3-D orientation of collagen fibers in cartilage: variable-incidence angle polarization-sensitive optical.
The contribution of collagen fibers to the mechanical compressive properties of the temporomandibular joint disc  S. Fazaeli, S. Ghazanfari, V. Everts,
The short-term effects of running on the deformation of knee articular cartilage and its relationship to biomechanical loads at the knee  M. Boocock,
Subchondral plate porosity colocalizes with the point of mechanical load during ambulation in a rat knee model of post-traumatic osteoarthritis  H. Iijima,
Knee osteoarthritis patients with severe nocturnal pain have altered proximal tibial subchondral bone mineral density  W.D. Burnett, S.A. Kontulainen,
Considerations in measuring cartilage thickness using MRI: factors influencing reproducibility and accuracy  S. Koo, M.S., G.E. Gold, M.D., T.P. Andriacchi,
J.H. Koolstra  Osteoarthritis and Cartilage 
Contrast-enhanced CT facilitates rapid, non-destructive assessment of cartilage and bone properties of the human metacarpal  B.A. Lakin, D.J. Ellis, J.S.
An in vivo cross-linkable hyaluronan gel with inherent anti-inflammatory properties reduces OA cartilage destruction in female mice subjected to cruciate.
Initial application of EPIC-μCT to assess mouse articular cartilage morphology and composition: effects of aging and treadmill running  N. Kotwal, J.
Calcification of human articular knee cartilage is primarily an effect of aging rather than osteoarthritis  H. Mitsuyama, M.D., Ph.D., R.M. Healey, B.S.,
Intraoperative validation of quantitative T2 mapping in patients with articular cartilage lesions of the knee  S.T. Soellner, A. Goldmann, D. Muelheims,
Subchondral plate porosity colocalizes with the point of mechanical load during ambulation in a rat knee model of post-traumatic osteoarthritis  H. Iijima,
Patient-specific chondrolabral contact mechanics in patients with acetabular dysplasia following treatment with peri-acetabular osteotomy  C.L. Abraham,
Arthroscopic estimation of the extent of chondropathy
A.C. Moore, D.L. Burris  Osteoarthritis and Cartilage 
Investigation of the frictional response of osteoarthritic human tibiofemoral joints and the potential beneficial tribological effect of healthy synovial.
Contrast Enhanced Computed Tomography can predict the glycosaminoglycan content and biomechanical properties of articular cartilage  P.N. Bansal, N.S.
Quantitative assessment of articular cartilage morphology via EPIC-μCT
S.M.T. Chan, C.P. Neu, G. DuRaine, K. Komvopoulos, A.H. Reddi 
Meniscus and cartilage exhibit distinct intra-tissue strain distributions under unconfined compression  J.H. Lai, M.E. Levenston  Osteoarthritis and Cartilage 
Determination of in-vivo articular cartilage contact areas of human talocrural joint under weightbearing conditions  L. Wan, B.S., R.J. de Asla, M.D.,
A more informed evaluation of medial compartment loading: the combined use of the knee adduction and flexor moments  K. Manal, E. Gardinier, T.S. Buchanan,
A.S. Aula, J. Töyräs, V. Tiitu, J.S. Jurvelin 
Chondroprotective effects of high-molecular-weight cross-linked hyaluronic acid in a rabbit knee osteoarthritis model  S. Elmorsy, T. Funakoshi, F. Sasazawa,
Spontaneous osteoarthritis in Str/ort mice is unlikely due to greater vulnerability to mechanical trauma  B. Poulet, T.A.T. Westerhof, R.W. Hamilton,
Effects of ACL interference screws on articular cartilage volume and thickness measurements with 1.5 T and 3 T MRI  M.E. Bowers, B.S., G.A. Tung, M.D.,
Comparison of load responsiveness of cartilage T1rho and T2 in porcine knee joints: an experimental loading MRI study  H. Hamada, T. Nishii, S. Tamura,
P. Julkunen, J. Iivarinen, P. A. Brama, J. Arokoski, J. S. Jurvelin, H
Nondestructive assessment of sGAG content and distribution in normal and degraded rat articular cartilage via EPIC-μCT  L. Xie, A.S.P. Lin, R.E. Guldberg,
D. Kumar, K.T. Manal, K.S. Rudolph  Osteoarthritis and Cartilage 
S.M. Hosseini, M.B. Veldink, K. Ito, C.C. van Donkelaar 
Site-dependent changes in structure and function of lapine articular cartilage 4 weeks after anterior cruciate ligament transection  J.T.A. Mäkelä, Z.S.
M. A. McNulty, R. F. Loeser, C. Davey, M. F. Callahan, C. M
Cartilage-on-cartilage contact: effect of compressive loading on tissue deformations and structural integrity of bovine articular cartilage  L. Zevenbergen,
P. -H. Tsai, M. -C. Chou, H. -S. Lee, C. -H. Lee, H. -W. Chung, Y. -C
Radiofrequency (RF) coil impacts the value and reproducibility of cartilage spin–spin (T2) relaxation time measurements  B.J. Dardzinski, E. Schneider 
Lateral trunk lean explains variation in dynamic knee joint load in patients with medial compartment knee osteoarthritis  M.A. Hunt, P.T., Ph.D., T.B.
T1rho and T2 Relaxation of Knee Articular Cartilage in Patients With and at Risk for Knee Osteoarthritis: A Systematic Review and Meta-Analysis  H.F.
Articular cartilage MR imaging and thickness mapping of a loaded knee joint before and after meniscectomy  Y. Song, M.S., J.M. Greve, M.S., D.R. Carter,
Relationships between in vivo dynamic knee joint loading, static alignment and tibial subchondral bone microarchitecture in end-stage knee osteoarthritis 
Diagnostic performance of knee ultrasonography for detecting degenerative changes of articular cartilage  S. Saarakkala, P. Waris, V. Waris, I. Tarkiainen,
K.H. Collins, R.A. Reimer, R.A. Seerattan, T.R. Leonard, W. Herzog 
A. K. O. Wong, D. Inglis, K. A. Beattie, A. Doan, G. Ioannidis, J
Quantitative regional and sub-regional analysis of femoral and tibial subchondral bone mineral density (sBMD) using computed tomography (CT): comparison.
Degeneration, inflammation, regeneration, and pain/disability in dogs following destabilization or articular cartilage grooving of the stifle joint  L.N.
The contribution of collagen fibers to the mechanical compressive properties of the temporomandibular joint disc  S. Fazaeli, S. Ghazanfari, V. Everts,
Comparison of 1-year vs 2-year change in regional cartilage thickness in osteoarthritis results from 346 participants from the Osteoarthritis Initiative 
Anatomical alignment, but not goniometry, predicts femorotibial cartilage loss as well as mechanical alignment: data from the Osteoarthritis Initiative 
H. Sadeghi, D.E.T. Shepherd, D.M. Espino  Osteoarthritis and Cartilage 
Joint loading and proximal tibia subchondral trabecular bone microarchitecture differ with walking gait patterns in end-stage knee osteoarthritis  B.C.
Articular damage caused by metal plugs in a rabbit model for treatment of localized cartilage defects  R.J.H. Custers, M.D., W.J.A. Dhert, M.D., Ph.D.,
Nanoindentation modulus of murine cartilage: a sensitive indicator of the initiation and progression of post-traumatic osteoarthritis  B. Doyran, W. Tong,
Direct comparison of fixed flexion, radiography and MRI in knee osteoarthritis: responsiveness data from the Osteoarthritis Initiative  W. Wirth, J. Duryea,
Effects of sustained interstitial fluid pressurization under migrating contact area, and boundary lubrication by synovial fluid, on cartilage friction 
R. A. Damion, S. S. Pawaskar, M. E. Ries, E. Ingham, S. Williams, Z
Structural changes in the knee during weight loss maintenance after a significant weight loss in obese patients with osteoarthritis: a report of secondary.
Meniscectomy alters the dynamic deformational behavior and cumulative strain of tibial articular cartilage in knee joints subjected to cyclic loads  Y.
Influence of medial meniscectomy on stress distribution of the femoral cartilage in porcine knees: a 3D reconstructed T2 mapping study  T. Shiomi, T.
Surface roughness and thickness analysis of contrast-enhanced articular cartilage using mesh parameterization  T. Maerz, M.D. Newton, H.W.T. Matthew,
Regional variation in T1ρ and T2 times in osteoarthritic human menisci: correlation with mechanical properties and matrix composition  M. Son, S.B. Goodman,
Knee cartilage defects in a sample of older adults: natural history, clinical significance and factors influencing change over 2.9 years  J. Carnes, O.
C. R. Henak, E. D. Carruth, A. E. Anderson, M. D. Harris, B. J
J.F. Nishimuta, M.E. Levenston  Osteoarthritis and Cartilage 
I. Gurkan, A. Ranganathan, X. Yang, W. E. Horton, M. Todman, J
Comparative study of depth-dependent characteristics of equine and human osteochondral tissue from the medial and lateral femoral condyles  J. Malda,
Central and peripheral region tibial plateau chondrocytes respond differently to in vitro dynamic compression  S.L. Bevill, P.L. Briant, M.E. Levenston,
Presentation transcript:

Tribological and material properties for cartilage of and throughout the bovine stifle: support for the altered joint kinematics hypothesis of osteoarthritis  A.C. Moore, D.L. Burris  Osteoarthritis and Cartilage  Volume 23, Issue 1, Pages 161-169 (January 2015) DOI: 10.1016/j.joca.2014.09.021 Copyright © 2014 Osteoarthritis Research Society International Terms and Conditions

Fig. 1 Definitions of sample sites within the bovine stifle and the regions classified for purposes of comparison. Left: the frontal plane view of a bovine stifle joint. Center: the sagittal plane view for three flexion angles in which different samples experience cartilage–cartilage contact. Right: sampling locations on the femoral condyles and tibial plateau. The comparisons of interest are the femoral condyles vs tibial plateau, medial vs lateral, and outer femoral condyles (O) vs central femoral condyles (C) vs inner femoral condyles (I) vs shielded tibial plateau (S) vs uncovered tibial plateau (U). Osteoarthritis and Cartilage 2015 23, 161-169DOI: (10.1016/j.joca.2014.09.021) Copyright © 2014 Osteoarthritis Research Society International Terms and Conditions

Fig. 2 Illustration of the custom microtribometer used to measure the material and functional properties of bovine articular cartilage. Osteoarthritis and Cartilage 2015 23, 161-169DOI: (10.1016/j.joca.2014.09.021) Copyright © 2014 Osteoarthritis Research Society International Terms and Conditions

Fig. 3 Representative data to illustrate the characterization of material properties. Left: force verses displacement curves for nominal speeds of 50, 0.5, 5, 20, and 10 μm/s, in that randomized order for a representative high functioning sample. Following the last indent the stage is held fixed until equilibrium is reached. The equilibrium contact modulus is obtained directly from that point and the dotted line represents the predicted Hertzian relationship between force and deformation. Right: the fluid load fraction is calculated for representative high and low functioning samples as a function of the prescribed indentation rate. The dark labels correspond to the force-displacement data on the left. The fits to the biphasic model from Moore and Burris16 are shown in red and were used to determine tissue permeability and tensile modulus. Osteoarthritis and Cartilage 2015 23, 161-169DOI: (10.1016/j.joca.2014.09.021) Copyright © 2014 Osteoarthritis Research Society International Terms and Conditions

Fig. 4 Correlations between the functional performance and material properties for bovine articular cartilage. The functional properties of interest are the effective friction coefficient (Left), effective contact modulus (Center) and fluid load fraction (Right). The Top row contains the best overall correlation for each functional metric. The Bottom row contains the best overall correlation for each functional metric against Ec0, k, and Ec0·k. Osteoarthritis and Cartilage 2015 23, 161-169DOI: (10.1016/j.joca.2014.09.021) Copyright © 2014 Osteoarthritis Research Society International Terms and Conditions

Fig. 5 Comparisons of the tribological and material properties for the femoral condyles and tibial plateaus of the bovine stifle joint. Error bars represent 95% confidence intervals. Significant differences are indicated by dissimilar letters, P < 0.05. Osteoarthritis and Cartilage 2015 23, 161-169DOI: (10.1016/j.joca.2014.09.021) Copyright © 2014 Osteoarthritis Research Society International Terms and Conditions

Fig. 6 Comparisons of the tribological and material properties for the femoral central (C), outer (O), inner (I), and tibial shielded (S) and uncovered (U) regions of the bovine stifle joint. Error bars represent 95% confidence intervals. Significant differences are indicated by dissimilar letters, P < 0.05. Osteoarthritis and Cartilage 2015 23, 161-169DOI: (10.1016/j.joca.2014.09.021) Copyright © 2014 Osteoarthritis Research Society International Terms and Conditions