Recap D flip-flop based counter Flip-flop transition table

Slides:



Advertisements
Similar presentations
Counters Discussion D8.3.
Advertisements

CS 140 Lecture 10 Sequential Networks: Implementation Professor CK Cheng CSE Dept. UC San Diego 1.
TOPIC : Finite State Machine(FSM) and Flow Tables UNIT 1 : Modeling Module 1.4 : Modeling Sequential circuits.
Sequential Logic Design
Chapter 8 -- Analysis and Synthesis of Synchronous Sequential Circuits.
Sequential Circuit Introduction to Counter
ECE/CS 352 Digital System Fundamentals© T. Kaminski & C. Kime 1 ECE/CS 352 Digital Systems Fundamentals Spring 2001 Chapter 4 – Part 3 Tom Kaminski & Charles.
State Machines.
Chapter 8 -- Analysis and Synthesis of Synchronous Sequential Circuits.
1 Lecture #12 EGR 277 – Digital Logic Synchronous Logic Circuits versus Combinational Logic Circuits A) Combinational Logic Circuits Recall that there.
Analysis and Synthesis of Synchronous Sequential Circuits A “synchronizing” pulse/edge signal (clock) controls the operation of the memory portion of the.
1 State Reduction Goal: reduce the number of states while keeping the external input-output requirements unchanged. State reduction example: a: input 0.
Digital Fundamentals Tenth Edition Floyd Chapter 9.
Chapter 8 -- Analysis and Synthesis of Synchronous Sequential Circuits.
A sequential logic circuit (a.k.a. state machine) consists of both combinational logic circuit(s) and memory devices (flip flops). The combinational circuits.
Common Elements in Sequential Design. Lecture 3 topics  Registers and Register Transfer  Shift Registers  Counters Basic Counter Partial sequence counters.
Counters and registers Eng.Maha Alqubali. Registers Registers are groups of flip-flops, where each flip- flop is capable of storing one bit of information.
Lecture No. 29 Sequential Logic.
Logic Design (CE1111 ) Lecture 6 (Chapter 6) Registers &Counters Prepared by Dr. Lamiaa Elshenawy 1.
CHAPTER 14 Digital Systems. Figure 14.1 RS flip-flop symbol and truth table Figure
Partitioning of a digital system.
Digital Logic & Design Dr. Waseem Ikram Lecture No. 35.
Digital Logic & Design Dr. Waseem Ikram Lecture No. 25.
Partitioning of a digital system.
Figure 8.1. The general form of a sequential circuit.
L5 – Sequential Circuit Design
Lecture 13 State Machines / ROMs
Digital Logic & Design Dr. Waseem Ikram Lecture 39.
Introduction to Advanced Digital Design (14 Marks)
Digital Fundamentals Abdul Hameed
Digital Logic & Design Dr. Waseem Ikram Lecture No. 28.
EEL 3705 / 3705L Digital Logic Design
Sequential Logic Counters and Registers
Figure 12-13: Synchronous Binary Counter
FIGURE 5.1 Block diagram of sequential circuit
DESIGN OF SEQUENTIAL CIRCUITS
Digital Design Lecture 9
Counters and Registers
CHAPTER 9 Shift Registers
Dr. Clincy Professor of CS
Digital Logic & Design Dr. Waseem Ikram Lecture No. 30.
Malik Najmus Siraj Digital Logic Design Malik Najmus Siraj
Digital Principles and Design Algorithmic State Machines
FINITE STATE MACHINES (FSMs)
Digital Logic & Design Dr. Waseem Ikram Lecture 38.
Digital Logic & Design Dr. Waseem Ikram Lecture No. 34.
CSE 140L Discussion Finite State Machines.
ECE 3130 – Digital Electronics and Design
Lecture No. 24 Sequential Logic.
Chapter 6 – Part 4 SYEN 3330 Digital Systems SYEN 3330 Digital Systems
Digital Logic & Design Dr. Waseem Ikram Lecture No. 31.
Digital Logic & Design Dr. Waseem Ikram Lecture No. 16.
CSE 370 – Winter Sequential Logic-2 - 1
Digital Logic & Design Dr. Waseem Ikram Lecture 40.
EET107/3 DIGITAL ELECTRONICS 1
Lecture 17 Logistics Last lecture Today HW5 due on Wednesday
Lecture No. 32 Sequential Logic.
Digital Logic & Design Dr. Waseem Ikram Lecture No. 36.
Programmable Logic Devices
Digital Logic Department of CNET Chapter-6
Digital Logic Department of CNET Chapter-6
SYEN 3330 Digital Systems Chapter 6 – Part 3 SYEN 3330 Digital Systems.
FINITE STATE MACHINES.
ANALYSIS OF SEQUENTIAL CIRCUIT LOGIC DIAGRAM
Lecture 17 Logistics Last lecture Today HW5 due on Wednesday
Instructor: Alexander Stoytchev
Lecture 22 Logistics Last lecture Today HW7 is due on Friday
Lecture 22 Logistics Last lecture Today HW7 is due on Friday
CSE 370 – Winter Sequential Logic-2 - 1
Shift Registers Dr. Rebhi S. Baraka
Presentation transcript:

Recap D flip-flop based counter Flip-flop transition table Flip-flop input table Karnaugh maps Logical expressions for flip-flop inputs Sequential circuit Implementation

Digital Logic & Design Dr. Waseem Ikram Lecture 33

Three possible state assignments for states a, b, c, d and f 000 001 b 010 c 011 d 100 f 110

Next State flip-flop input table for first State Assignment Present State Next State D flip-flop Inputs Output X=0 X=1 000 100 001 1 010 011

X Q x D + = 1 2 + = Q X D Q2Q1/Q0X 00 01 11 10 1 x Q2Q1/Q0X 00 01 11 1 2 + = 1 2 + = Q X D Q2Q1/Q0X 00 01 11 10 1 x Q2Q1/Q0X 00 01 11 10 1 x

X Q D 1 2 + = Q2Q1/Q0X 00 01 11 10 1 x

Next State flip-flop input table for second State Assignment Present State Next State D flip-flop Inputs Output X=0 X=1 001 110 010 1 011 100

X Q D + = X Q x D + = Q2Q1/Q0X 00 01 11 10 x 1 Q2Q1/Q0X 00 01 11 10 x + = X Q D 1 2 + = Q2Q1/Q0X 00 01 11 10 x 1 Q2Q1/Q0X 00 01 11 10 x 1

X Q D 1 2 + = Q2Q1/Q0X 00 01 11 10 x 1

Next State flip-flop input table for third State Assignment Present State Next State D flip-flop Inputs Output X=0 X=1 000 110 001 1 011 010

D = Q x + Q X + Q Q 1 1 D = Q Q x + Q Q X Q2Q1/Q0X 00 01 11 10 1 x 1 1 1 Q2Q1/Q0X 00 01 11 10 1 x Q2Q1/Q0X 00 01 11 10 1 x

Q2Q1/Q0X 00 01 11 10 x 1

Next State flip-flop input table for third State Assignment Present State Next State D flip-flop Inputs Output X=0 X=1 000 110 001 1 011 010

D = Q Q x + Q Q X D = Q x + Q X + Q Q 1 1 1 Q2Q1/Q0X 00 01 11 10 1 x 1 1 1 Q2Q1/Q0X 00 01 11 10 1 x Q2Q1/Q0X 00 01 11 10 1 x

D = Q Q Q x + Q X + Q Q + Q X 2 1 2 1 1 Q2Q1/Q0X 00 01 11 10 1 x

Karnaugh Map for J2 and K2 inputs Q2Q1/Q0 1 00 x 01 11 10 Q2Q1/Q0 1 00 x 01 11 10 1 2 = Q J 1 2 = Q K

Karnaugh Map for J0 and K0 inputs Q2Q1/Q0 1 00 x 01 11 10 Q2Q1/Q0 1 00 x 01 11 10

Implementation of the Moore Machine

Timing diagram of the Moore Machine

Karnaugh Map for J1 and K1 inputs Q2Q1/Q0 1 00 x 01 11 10 Q2Q1/Q0 1 00 x 01 11 10 1 = J 1 = Q K

State diagram of a Moore Machine

Next-State table of the Moore Machine Present State Next State Q2 Q1 Q0 1

J-K flip-flop input table for the Moore Machine Present State Next State J-K flip-flop inputs Q2 Q1 Q0 J2 K2 J1 K1 J0 K0 1 x

State diagram of a Mealy Machine

Next-State table of a Mealy Machine Present State Next State Output X=0 X=1 a b 011 111 c 001 d 010 e 100 f 110

State Assignments for the Mealy Machine Present State Next State X=0 X=1 000 001 011 010 110 100

J-K flip-flop input table for the Moore Machine (X=0) Present State Next State X=0 J-K flip-flop inputs Output Q2 Q1 Q0 J2 K2 J1 K1 J0 K0 O2 O1 O0 x 1

J-K flip-flop input table for the Moore Machine (X=1) Present State Next State X=1 J-K flip-flop inputs Output Q2 Q1 Q0 J2 K2 J1 K1 J0 K0 O2 O1 O0 1 x

Karnaugh Map for J0 and K0 inputs Q2Q1/Q0 1 00 x 01 11 10 Q2Q1/Q0 1 00 x 01 11 10

Karnaugh Map for J2 and K2 inputs Q2Q1/Q0X 00 01 11 10 1 x Q2Q1/Q0X 00 01 11 10 x 1 X Q J 1 2 = X Q K 1 2 =

Karnaugh Map for J1 and K1 inputs Q2Q1/Q0X 00 01 11 10 1 x Q2Q1/Q0X 00 01 11 10 x 1 X Q J 1 = 2 1 + = Q K

Karnaugh Map for J0 and K0 inputs Q2Q1/Q0X 00 01 11 10 1 x Q2Q1/Q0X 00 01 11 10 x 1 X Q J 1 2 = X Q K 1 =

Karnaugh Map for J1 and K1 inputs Q2Q1/Q0X 00 01 11 10 x 1 Q2Q1/Q0X 00 01 11 10 1 x J = Q X K = Q X 1 1 2

X Q O + = X Q O 1 2 + = Q2Q1/Q0X 00 01 11 10 1 x Q2Q1/Q0X 00 01 11 10 1 2 + = X Q O 1 2 + = Q2Q1/Q0X 00 01 11 10 1 x Q2Q1/Q0X 00 01 11 10 1 x

Karnaugh Map for O2, O1 and O0 outputs Q2Q1/Q0X 00 01 11 10 1 x X Q O 1 2 + =

Karnaugh Map for J1 and K1 inputs Q2Q1/Q0 1 00 x 01 11 10 Q2Q1/Q0 1 00 x 01 11 10

Implementation of the Mealy Machine

Timing diagram of the Mealy Machine

Implementation of the Moore Machine

Timing diagram of the Moore Machine

Recap Design of Up/Down Counter State Diagram Next-State Table Flip-flop transition table Flip-flop input table Karnaugh maps Logical expressions for flip-flop inputs Sequential circuit Implementation

Recap State Reduction State Diagram Input/Output sequence using original state diagram Next-State table reduction Reduced State Diagram Input/Output sequence using reduced state diagram

State Assignment State Assignment Table (tab 1) Flip-flop input table & K map for 1st assignment (tab 2) Flip-flop input table & K map for 1st assignment (tab 3) Flip-flop input table & K map for 1st assignment (tab 4)

Moore Machine State Diagram (fig 1) Next-State Table (tab 5) J-K flip-flop Input Table (tab 6) Karnaugh Maps (tab 7a, 7b, 7c) Implementation (fig 2a) Timing diagram (fig 2b)

Mealy Machine State Diagram (fig 3) Next-State Table (tab 8) State Assignment (tab 9) J-K flip-flop Input Table (tab 10a, 10b) Karnaugh Maps (tab 11a, 11b, 11c, 11d) Implementation (fig 4a) Timing diagram (fig 4b) Output

Shift Registers Serial In/Shift Right/Serial Out (fig 1) Serial In/Shift Left/Serial Out (fig 2) D flip-flop based Serial Shift Reg. (fig 3a) Timing diagram (fig 3b) Universal Serial register (fig 4a) Timing diagram (fig 4b)

Shift Registers Serial In/Parallel Out (fig 5) Serial In/Parallel Out 74HC164 (fig 6a) Timing diagram (fig 6b) Parallel In/Serial Out (fig 7) Circuit diagram Parallel In/Serial Out (fig 8) 74HC165 (fig 9)