Objectives Discuss Project 1 (eQUEST) Learn about HVAC Systems

Slides:



Advertisements
Similar presentations
HVAC 13a CNST 305 Environmental Systems 1 Dr. Berryman
Advertisements

Chapter 3. HVAC Delivery Systems
BUILDING AIR CONDITIONING
Heating, Ventilating, and Air-Conditioning
Institute of Energy and Sustainable Development HVAC S YSTEMS E NERGY D EMAND VS. B UILDING E NERGY D EMAND I VAN K OROLIJA I NSTITUTE OF E NERGY AND S.
eQuest Quick Energy Simulation Tool
Environmental Controls I/IG Lecture 14 Mechanical System Space Requirements Mechanical System Exchange Loops HVAC Systems Lecture 14 Mechanical System.
HVAC 101 The Basics of Heating, Ventilation and Air Conditioning
Geothermal Retrofit of HVAC Systems
Energy in Focus Energy Savings with Water Based Systems By Maija Virta Specialist of Indoor Environment Technology.
HVAC Systems Overview HVAC Overview - # 1 Tom Lawrence
Announcement Course Exam October 6 th (Thursday) In class: 90 minutes long Examples are posted on the course website.
Lecture Objectives: Model processes in AHU –Use eQUEST predefined models –Use detail modeling Define your topics for your final project.
Refrigeration and Heat Pump Systems Refrigeration systems: To cool a refrigerated space or to maintain the temperature of a space below that of the surroundings.
Lecture Objectives: Finish wit introduction of HVAC Systems Introduce major ES software.
Lecture Objectives: Model HVAC Systems –HW3 Asignemnet Learn about eQUEST software –How to conduct parametric analysis of building envelope.
Lecture Objectives: Final discussion about HW3 Introduce more final project topics Continue with HVAC Systems.
Lecture Objectives: Model processes in AHU –Use eQUEST predefined models –Use detail modeling Define your topics for your final project.
Equation solvers Matlab Free versions / open source codes: –Scilab MathCad: Mathematica:
Important variables Water: Air: Conversion:
Lecture Objectives: Finish with HVAC Systems Discuss Final Project.
Lecture Objectives: Specify Exam Time Finish with HVAC systems –HW3 Introduce Projects 1 & 2 –eQUEST –other options.
N O R T H A M E R I C A C O M M E R C I A L TDP
STUDY ON HVAC SYSTEM STUDY ON HVAC SYSTEM
Lecture Objectives: Finish with software intro HVAC Systems
Lecture Objectives: -Discuss the final project presentations -Energy simulation result evaluation -Review the course topics.
Lecture Objectives: Clarify issues related to eQUEST –for midterm project Learn more about various HVAC - economizer - heat recovery Discuss about the.
Systems and Applications Basic Types Direct Expansion Air-WaterAll-AirAll-Water.
Facilities Management and Design Chapter 7 HVAC Systems.
Lecture Objectives: -Discus Final Project -Learn about Solar Systems -HW3 (final HW assignment) -HVAC system.
Lecture Objectives: Discuss exam questions
Lecture Objectives: -Define the midterm project -Lean about eQUEST -Review exam problems.
Announcement Course Exam November 3rd In class: 90 minutes long Examples will be posted on the course website.
Announcement Course Exam November 3rd In class: 90 minutes long Examples will be posted on the course website.
Announcement Course Exam October 6 th (Thursday) In class: 90 minutes long Examples are posted on the course website.
Lecture Objectives: Discuss the exam problems Answer question about HW 3 and Final Project Assignments Building-System-Plant connection –HVAC Systems.
Lecture Objectives: Differences in Conduction Calculation in Various Energy Simulation Programs Modeling of HVAC Systems.
Announcement Course Exam: Next class: November 3rd In class: 90 minutes long Examples are posted on the course website.
Final Project Format and Deliverables Examples
Final Project I need your proposal about the final project! It should include –Title –Group members –Objective –Short description –Methodology –Expected.
Lecture Objectives: -Discuss about the final project and presentation -Introduce advance simulation tools -Review the course topics.
LEVEL 4 BUILDING SERVICES TRAINING Level 3 Re-cap Cooling Systems looked at within Level 3 included; –Through-the-wall packages –Individual reversible.
Chapter 14 Heating, Ventilation & Air conditioning (hvac)
Lecture Objectives: Discuss HW3 parts d) & e) Learn about HVAC systems
Final project presentations
Lecture Objectives: Discuss Final Project
We need to decide about the time for the final project presentation
Lecture Announcement Developing Concrete with a Structural and Thermal Insulation Performance and Homogenous and Stratified Approach Dr. Mauricio Lopez.
Heating, Ventilating, and Air Conditioning
Heating Ventilating and Air Conditioning
Lecture Objectives: Discuss exam questions
HVAC Basics Arkan Arzesh HVAC – Heating, Ventilation, Air-conditioning.
Lecture Objectives: Discus Final Project Learn about Solar Systems
Lecture Objectives: Answer questions related to HW 4
Lecture Objectives: Finish with HVAC systems
Lecture Objectives: Discuss accuracy of energy simulation and Introduce advance simulation tools Review the course topics Do the Course and Instructor.
Lecture Objectives: Discuss HW3 parts d) & e) Learn about HVAC systems
Lecture Objectives: Answer questions related to HW 4
Heating, Ventilating, and Air-Conditioning
Chapter 11: DESCRIPTION OF HVAC SYSTEMS
October 31st In class test!
Lecture Objectives: Discus Final Project Learn about Solar Systems
Lecture Objectives: Discuss HW4 parts
Lecture Objectives: Review linearization of nonlinear equation for unsteady state problems Learn about whole building modeling equations.
Make up: Project presentation class at the end of the semester
Lecture Objectives: Finish with major ES software Introduce HW 4.
Announcements Exam 1 Next Class (Thursday, March 14th):
Objective Revie the Cooling Cycle Learn about air distribution systems
Chapter 11: DESCRIPTION OF HVAC SYSTEMS
Presentation transcript:

Objectives Discuss Project 1 (eQUEST) Learn about HVAC Systems Learn about weather data Discuss Internal Building Loads Thermostat Setpoints Learn about HVAC Systems

eQUEST (DOE2) US Department of Energy & California utility customers eQUEST - interface for the DOE-2 solver DOE-2 - one of the most widely used ES program - recognized as the industry standard eQUEST very user friendly interface Good for life-cycle cost and parametric analyses Not very large capabilities for modeling of different HVAC systems Many simplified models Certain limitations related to research application - no capabilities for detailed modeling

Weather File Typical Meteorological Year TMY, TMY2, TMY3 http://rredc.nrel.gov/solar/old_data/nsrdb/1991-2005/tmy3/

Internal Loads

Energy consumption: kWh/year Units are in kW/h per year

eQUEST HVAC Models Predefined configuration (no change) Divided according to the cooling and heating sources Details in e quest help file: For example: DX CoilsNo Heating Packaged Single Zone DX (no heating) Packaged single zone air conditioner with no heating capacity, typically with ductwork. Split System Single Zone DX (no heating) Central single zone air conditioner with no heating, typically with ductwork. System has indoor fan and cooling coil and remote compressor/condensing unit. Packaged Terminal AC (no heating) Packaged terminal air conditioning unit with no heating and no ductwork. Unit may be window or through-wall mounted. Packaged VAV (no heating) DX CoilsFurnace Packaged direct expansion cooling system with no heating capacity. System includes a variable volume, single duct fan/distribution system serving multiple zones each with it's own thermostatic control. Packaged Single Zone DX with Furnace Central packaged single zone air conditioner with combustion furnace, typically with ductwork. Split System Single Zone DX with Furnace Central single zone air conditioner with combustion furnace, typically with ductwork. System has indoor fan and cooling coil and remote compressor/condensing unit. Packaged Multizone with Furnace Packaged direct expansion cooling system with combustion furnace. System includes a constant volume fan/distribution system serving multiple zones, each with its own thermostat. Warm and cold air are mixed for each zone to meet thermostat control requirements.

Building HVAC Systems (Primary and Secondary Building Systems) AHU – Air Handling Unit Distribution systems Fresh air For ventilation AHU Primary systems Air transport Electricity Secondary systems Cooling (chiller) Heating (boilers) Building envelope HVAC systems affect the energy efficiency of the building as much as the building envelope (or Gas) Gas

Integration of HVAC and building physics models Load System Plant model Building Qbuiolding Heating/Cooling System Q including Ventilation and Dehumidification Plant Integrated models Building Heating/Cooling System Plant

Characteristic parameters Conduction (and accumulation) solution method finite dif (explicit, implicit), response functions Time steps Meteorological data Radiation and convection models (extern. & intern.) Windows and shading Infiltration models Conduction to the ground HVAC and control models

Example related to Project 1 ……