Shufang Su • U. of Arizona

Slides:



Advertisements
Similar presentations
Ze-Peng Liu, Yue-Liang Wu and Yu-Feng Zhou Kavli Institute for Theoretical Physics China, Institute of Theoretical Physics, Chinese Academy of Sciences.
Advertisements

SuperWIMP Dark Matter Jonathan Feng University of California, Irvine UC Berkeley 11 October 2004.
Gravitino Dark Matter & R-Parity Violation M. Lola MEXT-CT (work with P. Osland and A. Raklev) Prospects for the detection of Dark Matter Spain,
WIMPs and superWIMPs Jonathan Feng UC Irvine MIT Particle Theory Seminar 17 March 2003.
Joe Sato (Saitama University ) Collaborators Satoru Kaneko,Takashi Shimomura, Masato Yamanaka,Oscar Vives Physical review D 78, (2008) arXiv:1002.????
Highly-Ionizing Particles in Supersymmetric Models John Ellis King’s College London & CERN.
Dark Matter: A Mini Review Jin Min Yang Hong Kong (杨 金 民)(杨 金 民) Institute of Theoretical Physics Academia Sinica, Beijing.
SuperWIMP Dark Matter Jonathan Feng University of California, Irvine University of Washington 4 March 2005.
WIMPs and superWIMPs Jonathan Feng UC Irvine SUGRA20 18 March 2003.
CDF D0 Supersymmetry at the Tevatron R. Demina University of Rochester.
23 September 05Feng 1 COSMOLOGY AT COLLIDERS Jonathan Feng University of California, Irvine 23 September 2005 SoCal Strings Seminar Graphic: N. Graf.
SuperWIMP Cosmology and Collider Phenomenology Jonathan Feng University of California, Irvine SUSY04, Tsukuba 21 June 2004.
Discovery of Long-Lived The LHC Bryan Smith West Coast Theory Network University of California, Irvine 4 th May 2007 Work with Jonathan Feng,
WIMPS AND THEIR RELATIONS Jonathan Feng University of California, Irvine CIFAR, Mont Tremblant 7 March 2009 Work with Jose Ruiz Cembranos 1, Manoj Kaplinghat.
Sombrero Galaxy (M104, 46 M light years). Long-lived charged massive particle and its effect on cosmology Physics Department, Lancaster University Physics.
Susy05, Durham 21 st July1 Split SUSY at Colliders Peter Richardson Durham University Work done in collaboration with W. Kilian, T. Plehn and E. Schmidt,
1 the LHC Jet & MET Searches Adam Avakian PY898 - Special Topics in LHC Physics 3/23/2009.
The LC and the Cosmos: Connections in Supersymmetry Jonathan Feng UC Irvine Arlington LC Workshop January 2003.
The LC and the Cosmos: Connections in Supersymmetry Jonathan Feng UC Irvine American Linear Collider Physics Group Seminar 20 February 2003.
SuperWIMP Dark Matter Jonathan Feng UC Irvine FNAL Theoretical Astrophysics Seminar 17 May 2004.
20 June 06Feng 1 DARK MATTER AND SUPERGRAVITY Jonathan Feng University of California, Irvine 20 June 2006 Strings 2006, Beijing.
The Dark Universe Progress, Problems, and Prospects Jonathan Feng University of California, Irvine APS April Meeting, Denver 1 May 2004.
Feng 1 LHC PROSPECTS FOR COSMOLOGY Jonathan Feng University of California, Irvine COSMO 09, CERN 7 September 2009.
9 Oct 08Feng 1 DARK MATTERS 9 October 2008 Caltech Physics Colloquium Jonathan Feng UC Irvine.
REHEATING TEMPERATURE IN GAUGE MEDIATION MODELS AND COMPRESSED PARTICLE SPECTRUM Olechowski, SP, Turzynski, Wells (ABOUT RECONCILING SUPERSYMMETRIC DARK.
12 Apr 06Feng 1 RECENT PROGRESS IN SUSY DARK MATTER Jonathan Feng University of California, Irvine 12 April 2006 Texas A&M Mitchell Symposium Graphic:
Quintessino model and neutralino annihilation to diffuse gamma rays X.J. Bi (IHEP)
SUSY Dark Matter Collider – direct – indirect search bridge. Sabine Kraml Laboratoire de Physique Subatomique et de Cosmologie Grenoble, France ● 43. Rencontres.
Masato Yamanaka (Saitama University) collaborators Shigeki Matsumoto Joe Sato Masato Senami arXiv: [hep-ph]Phys.Lett.B647: and Relic abundance.
DARK MATTER CANDIDATES Cody Carr, Minh Nguyen December 9 th, 2014.
Right-handed sneutrino as cold dark matter of the universe Takehiko Asaka (EPFL  Niigata University) Refs: with Ishiwata and Moroi Phys.Rev.D73:061301,2006.
SUSY in the sky: supersymmetric dark matter David G. Cerdeño Institute for Particle Physics Phenomenology Based on works with S.Baek, K.Y.Choi, C.Hugonie,
Dark Matter Detection in Space Jonathan Feng UC Irvine SpacePart 03, Washington, DC 10 December 2003.
Cosmology and Collider Physics - Focus on Neutralino Dark Matter - Masahiro Yamaguchi (Tohoku U.) 7 th ACFA LC Taipei Nov. 12, 2004.
SUSY08 Seoul 17 June 081 Daniel Teyssier RWTH Aachen University Searches for non-standard SUSY signatures in CMS on behalf of the CMS collaboration.
Long-lived superpartners in the MSSM Alexey GLADYSHEV (JINR, Dubna / ITEP, Moscow) PROTVINO, December 25, 2008 PHYSICS OF FUNDAMENTAL INTERACTIONS PHYSICS.
October 2011 David Toback, Texas A&M University Research Topics Seminar1 David Toback Texas A&M University CIPANP, June 2012.
Detecting metastable staus and gravitinos at the ILC Hans-Ulrich Martyn RWTH Aachen & DESY.
STAU CLIC Ilkay Turk Cakir Turkish Atomic Energy Authority with co-authors O. Cakir, J. Ellis, Z. Kirca with the contributions from A. De Roeck,
Stable SuperWeakly Interacting Massive Particles (SuperWIMPs) Fumihiro Takayama (Cornell/DESY) ~ Late decaying particles and the implications for astrophysical.
SUSY search prospects with 1 fb-1 data
Searching for CHAMPs at CDF
A Solution to the Li Problem by the Long Lived Stau
Dark Matter: A Mini Review
Shufang Su • U. of Arizona
Phenomenology of Twin Higgs Model
Shufang Su • U. of Arizona
Search for New Physics beyond the SM
MSSM4G: MOTIVATIONS AND ALLOWED REGIONS
PARTICLE DARK MATTER CANDIDATES
Phenomenology of Twin Higgs Model
Phenomenology of Twin Higgs Model
GOLDILOCKS COSMOLOGY Work with Ze’ev Surujon, Hai-Bo Yu (1205.soon)
Supersymmetric Dark Matter
Shufang Su • U. of Arizona
Shufang Su • U. of Arizona
Shufang Su • U. of Arizona
Testing the Standard Model and Beyond
Phenomenology of Twin Higgs Model
Shufang Su • U. of Arizona
SUSY WIMP and Collider Signatures
Dark matter annihilation and the Milky Way diffuse gamma
Collider signatures of gravitino dark matter with a sneutrino NLSP
SUSY Searches with ZEUS
Search for Invisible Decay of Y(1S)
SUSY SEARCHES WITH ATLAS
Institute of Theoretical Physics, CAS
Sombrero Galaxy (M104, 46 M light years)
How Heavy can Neutralino Dark Matter be?
(Tokyo university, ICRR)
Presentation transcript:

Shufang Su • U. of Arizona SuperWIMP Dark matter in SUSY with a Gravitino LSP Shufang Su • U. of Arizona J. Feng, F. Takayama, S. Su hep-ph/0404198, 0404231

Outline SWIMP dark matter and gravitino LSP Constraints - SWIMP dark matter and gravitino LSP Constraints Late time energy injection and BBN NLSP  gravitino +SM particle slepton, sneutrino, neutralino - approach I: fix SWIMP=0.23 - approach II: SWIMP=(mSWIMP/mNLSP) thNLSP Collider phenomenology Conclusion S. Su SWIMP

Why gravitino not considered as CDM usually? - thG  v-1  (gravitional coupling)-2 (comparig to WIMP of weak coupling strength) v too small thG too big, overclose the Universe ~ However, gravitino can get relic density by other means SuperWIMP S. Su SWIMP

WIMP  SWIMP + SM particle - FRT hep-ph/0302215, 0306024 WIMP 104 s  t  108 s SWIMP SM  Gravitino LSP  LKK graviton 106 S. Su SWIMP

SWIMP and SUSY WIMP SWIMP: G (LSP) WIMP: NLSP mG » mNLSP ~ SUSY case - SWIMP: G (LSP) WIMP: NLSP mG » mNLSP ~ SUSY case ~ Ellis et. al., hep-ph/0312262; Wang and Yang, hep-ph/0405186. 104 s  t  108 s NLSP  G + SM particles ~ neutralino/chargino NLSP slepton/sneutrino NLSP BBN EM had Brhad  O(0.01) Brhad  O(10-3) S. Su SWIMP

Constraints ~ NLSP  G + SM particles  Dark matter density G · 0.23 - ~ NLSP  G + SM particles  Dark matter density G · 0.23 ~ Approach I Approach II SWIMP close universe SWIMP maybe insiginificant nNLSP  SWIMP/mSWIMP1/mSWIMP  1/mSUSY thNLSP  v-1  m2SUSY  nNLSP  mSUSY NLSP: slepton,sneutrino neutralino : excluded NLSP: slepton, sneutrino, neutralino fix G = 0.23 ~ G = mG/mNLSP thNLSP ~ S. Su SWIMP

Constraints (cont’)  CMB photon energy distribution -  CMB photon energy distribution - early decay:  = 0 thermalized through e  e, eX  eX , e  e - late decay:   0 statistical but not thermodynamical equilibrium || · 9 £ 10-5 Fixsen et. al., astro-ph/9605054 Hagiwara et. al., PDG S. Su SWIMP

Constraints (cont’) ?  Big bang nucleosynthesis /10-10 = 6.1 0.4 Fields, Sarkar, PDG (2002) S. Su SWIMP

BBN constraints on EM/had injection - Decay lifetime NLSP EM/had energy release EM,had=EM,had BrEM,had YNLSP Cyburt, Ellis, Fields and Olive, PRD 67, 103521 (2003) EM EM (GeV) Kawasaki, Kohri and Moroi, astro-ph/0402490 had had (GeV) EM S. Su SWIMP

Decay lifetime Decay lifetime (sec) ~ ~ l  G + l,  ! G +  - Decay lifetime (sec) l  G + l,  ! G +  ~ B  G + /Z/h ~ S. Su SWIMP

EM.had and BrEM, had EM, had » mNLSP-mG EM/had branching ratio BrEM, had ~ neutralino slepton Sneutrino EM mode BrEM 1 had Brhad O(1) O(10-2 - 10-6) S. Su SWIMP

YNLSP: approach I approach I: fix G = 0.23 ~ slepton and sneutrino - approach I: fix G = 0.23 ~ slepton and sneutrino 200 GeV ·  m · 400 » 1500 GeV mG ¸ 200 GeV ~  m · 80 » 300 GeV apply CMB and BBN constraints on (NLSP, EM/had )  viable parameter space NLSP, EM,had=EM,had BEM,had YNLSP S. Su SWIMP

YNLSP: approach II approach II: G = (mG/mNLSP) thNLSP ~ - approach II: G = (mG/mNLSP) thNLSP ~ Approximately right-handed slepton sneutrino (left-handed slepton) neutralino “bulk” -“focus point/co-annihilation” S. Su SWIMP

Approach II: right-handed slepton G = (mG/mNLSP) thNLSP ~ S. Su SWIMP

Approach II: sneutrino - G = (mG/mNLSP) thNLSP ~ S. Su SWIMP

Approach II: bino - G = (mG/mNLSP) thNLSP ~ S. Su SWIMP

Collider Phenomenology - SWIMP Dark Matter no signals in direct / indirect dark matter searches SUSY NLSP: rich collider phenomenology NLSP in SWIMP: long lifetime  stable inside the detector Charged slepton highly ionizing track, almost background free charged track in tracking chamber, hit muon detector little hadronic activities in calorimeters slow moving: large dE/dx, TOF information S. Su SWIMP

Distinguish from stau NLSP and gravitino LSP in GMSB Charged Slepton NLSP - Collider searches: RUN I and Run II search for highly ionizing particle LEP searches for stable stau in GMSB m  99 GeV at 95% C.L. prospect at Tevatron RUN II 110/180 GeV for L=2, 10 fb-1 5 event LHC Cerutti et. al., LEPSUSYWG/02-05.1 Feng and Moroi, PRD 58, 035001 (1998) cover m » 90 – 700 GeV for L=100 fb-1 (GMSB) Acosta, talk at HCP2002 Distinguish from stau NLSP and gravitino LSP in GMSB GMSB: gravitino m » keV warm not cold DM collider searches: other sparticle (mass) (GMSB) ¿ (SWIMP): distinguish experimentally Feng, Murayama and Smith, in preparation. S. Su SWIMP

Sneutrino and neutralino NLSP - sneutrino and neutralino NLSP missing energy signal: energetic jets/leptons + missing energy  Is the lightest SM superpartner sneutrino or neutralino? angular distribution of events (LC) vs.  Does it decay into gravitino or not? sneutrino case: most likely gravitino is LSP neutralino case: most likely neutralino LSP direct/indirect dark matter search positive detection  disfavor gravitino LSP precision determination of SUSY parameter: th, ~ ~ ,  0.23  favor gravitino LSP ~ S. Su SWIMP

Conclusions SuperWIMP is possible candidate for dark matter - SuperWIMP is possible candidate for dark matter SUSY models SWIMP: gravitino LSP WIMP: slepton/sneutrino/neutralino Constraints from BBN: EM injection and hadronic injection need updated studies of BBN constraints on hadronic/EM injection Favored mass region Approach I: fix G=0.23 Approach II: G = (mG/mNLSP) thNLSP Rich collider phenomenology (no direct/indirect DM signal) charged slepton: highly ionizing track distinguish from GMSB sneutrino/neutralino: missing energy stable or not? ~ ~ ~ S. Su SWIMP

SM energy distribution Decay life time  Mpl SM energy distribution  mG  SUSY breaking scale SM NLSP ~ G SM NLSP ~ SM NLSP ~ G ~ G NLSP SM SM NLSP ~ G ~ G S. Su SWIMP

Frequently asked question

Something about  lepton -   G +, ~   mesons, induce hadronic cascade meson decay before interact with BG hadrons longer than typical meson (, K) lifetime (E/m)£ 10-8 s S. Su SWIMP