Fig. 6-00.

Slides:



Advertisements
Similar presentations
Fig. 7-2a, p.108. Fig. 7-2b, p.108 a All carbohydrate breakdown pathways start in the cytoplasm, with glycolysis. b Fermentation pathways are completed.
Advertisements

(The process of converting glucose into ATP)
Ch 6 Cellular Respiration. Energy for life ECOSYSTEM Photosynthesis in chloroplasts Glucose Cellular respiration in mitochondria H2OH2O CO 2 O2O2  
Ch 6 Cellular Respiration. Energy for life ECOSYSTEM Photosynthesis in chloroplasts Glucose Cellular respiration in mitochondria H2OH2O CO 2 O2O2  
Cellular Respiration. Harvesting Chemical Energy  So we see how energy enters food chains (via autotrophs) we can look at how organisms use that energy.
© 2010 Pearson Education, Inc. Lectures by Chris C. Romero, updated by Edward J. Zalisko PowerPoint ® Lectures for Campbell Essential Biology, Fourth Edition.
Unit 7 – ENERGY PROCESSING IN LIVING ORGANISMS
Cellular Respiration: Harvesting Chemical Energy
Biology Honors. First, a little about ATP ATP– the energy that our cells use Cells use glucose to make ATP When the cell needs energy, it breaks ATP When.
Cellular Respiration: Obtaining Energy from Food
CELLULAR RESPIRATION CHAPTER 9 SC B-3.2 Summarize the basic aerobic & anaerobic processes of cellular respiration & interpret the equation.
Cellular Respiration: Obtaining Energy from Food
Biology 12 - respiration.
Chapter 4 Cells and Energy Cellular Respiration. Cellular respiration  Process by which food molecules are broken down to release energy  Glucose and.
Cellular Respiration Chapter 7 pgs Food to energy.
Lecture #4Date _________ Chapter 9~ Cellular Respiration: Harvesting Chemical Energy.
CELLULAR RESPIRATION How Cells Harvest Chemical Energy.
Glycolysis, Kreb’s, and ETC
CELLULAR RESPIRATION (The process of converting glucose into ATP)
Chapter 6 Cellular Respiration. Outline Day 1 –Energy Flow and Carbon Cycling –Overview of Energy Metabolism –Redox Reactions –Electrons and Role of Oxygen.
Chapter 7: Energy for Cells. Cellular Respiration ATP molecules are produced during cellular respiration with the help of the mitochondria Respiration.
© 2010 Pearson Education, Inc. Lectures by Chris C. Romero, updated by Edward J. Zalisko PowerPoint ® Lectures for Campbell Essential Biology, Fourth Edition.
Cellular Respiration What is Cellular Respiration? Step-by-step breakdown of high- energy glucose molecules to release energy Takes place day and night.
Connecting Cellular Respiration and Photosynthesis Living cells require energy from outside sources Some animals, such as chimpanzees, obtain energy by.
Cellular Respiration: Obtaining Energy from Food
Cellular Respiration.
Unit 7 Test Review Introduction: Organism and Energy History of Life
How Cells Release Chemical Energy
Cellular Respiration C6H12O6 + 6 O2 6 CO2 + 6H2O + 38 ATP.
2.A.2 Organisms Capture and Store Energy Part II (Cellular Respiration) Organisms capture and store free energy for use in biological processes.
Cellular Respiration.
Cell Respiration.
Cellular Respiration “Making energy in cells”.
Glycolysis and Cellular Respiration
Cellular Respiration.
Cellular Respiration & Fermentation
Ch 6 Cellular Respiration.
Energy Flow and Matter Cycling (Carbon)
How Cells Harvest Chemical Energy
Cellular Respiration C6H12O6 + 6 O2 6 CO2 + 6H2O + 38 ATP.
Ch. 9 Cellular Respiration & Fermentation
Cellular Respiration.
The student is expected to: 4B investigate and explain cellular processes, including homeostasis, energy conversions, transport of molecules, and synthesis.
Cellular Respiration Harvesting Chemical Energy
Cellular Respiration.
CELLULAR RESPIRATION Chapter 9.
How Cells Harvest Chemical Energy
Cellular Respiration Remember: In order for cells to survive, it must have energy to do work!!! ATP is the energy that’s available to do work! How does.
Cellular Respiration C6H12O6 + 6O2 6CO2 + 6 H2O + 36 ATP + Heat
Chapter 9: Cellular Respiration
Cellular Respiration Reminder for note-taking:
Type Topic in here! Created by Educational Technology Network
CELLULAR RESPIRATION Chapter 6.
How Cells Harvest Chemical Energy
Cellular Respiration Cellular respiration breaks down glucose molecules and banks their energy in ATP The process uses O2 and releases CO2 and H2O Glucose.
It’s a big bright beautiful world
Cellular Respiration.
How our body makes ATP, ENERGY!!
Cellular Respiration Chapter 6.
Chapter 7 Cellular Respiration
Chapter 9 Cellular Respiration.
Riveting Respiration Chapter 9 So Why do we Breathe????
Cellular Respiration C6H12O6 + 6 O2 6 CO2 + 6H2O + 38 ATP.
Cellular Respiration C6H12O6 + 6 O2 6 CO2 + 6H2O + 38 ATP.
Chemical Reactions and Cell Processes
How Cells Harvest Chemical Energy
Chapter 07 Cellular Respiration
Cellular Respiration C6H12O6 + 6 O2 6 CO2 + 6H2O + 38 ATP.
Cellular Respiration.
Cellular Respiration.
Presentation transcript:

Fig. 6-00

Fig. 6-01

Heat energy exits ecosystem Fig. 6-02 Sunlight energy enters ecosystem Photosynthesis C6H12O6 Glucose O2 Oxygen CO2 Carbon dioxide H2O Water Cellular respiration ATP drives cellular work Heat energy exits ecosystem

O2 CO2 Breathing O2 CO2 Muscle cells Cellular respiration Fig. 6-03 O2 CO2 Breathing Lungs O2 CO2 Muscle cells Cellular respiration

O2 CO2 Breathing O2 CO2 Muscle cells Cellular respiration Fig. 6-03a O2 CO2 Breathing Lungs O2 CO2 Muscle cells Cellular respiration

Fig. 6-03b

1 H2 O2 2 Release of heat energy H2O Fig. 6-04 1 H2 O2 2 Release of heat energy H2O

Electron transport chain Fig. 6-05 e e Electrons from food e e Stepwise release of energy used to make NAD NADH ATP 2 H 2 e Electron transport chain 2 e 2 1 2 H O2 Hydrogen, electrons, and oxygen combine to produce water H2O

Mitochondrion Cytoplasm Cytoplasm Animal cell Plant cell Cytoplasm Fig. 6-06 Mitochondrion Cytoplasm Cytoplasm Animal cell Plant cell Cytoplasm Mitochondrion High-energy electrons carried by NADH High-energy electrons carried mainly by NADH Glycolysis Citric Acid Cycle 2 Pyruvic acid Electron Transport Glucose ATP ATP ATP

Cytoplasm Mitochondrion Glycolysis 2 Pyruvic acid ATP ATP ATP Fig. 6-06a Cytoplasm Mitochondrion High-energy electrons carried by NADH High-energy electrons carried mainly by NADH Glycolysis Citric Acid Cycle 2 Pyruvic acid Electron Transport Glucose ATP ATP ATP

Energy investment phase Fig. 6-07-1 INPUT OUTPUT 2 ATP 2 ADP Glucose Key Carbon atom Phosphate group High-energy electron Energy investment phase

Energy investment phase Fig. 6-07-2 INPUT OUTPUT NADH NAD 2 ATP 2 ADP Glucose Key NAD Carbon atom NADH Phosphate group High-energy electron Energy investment phase Energy harvest phase

Energy investment phase Fig. 6-07-3 INPUT OUTPUT NADH 2 ATP NAD 2 ADP 2 ATP 2 ADP 2 Pyruvic acid Glucose 2 ADP 2 ATP Key NAD Carbon atom NADH Phosphate group High-energy electron Energy investment phase Energy harvest phase

Fig. 6-08 Enzyme P ADP ATP P P

INPUT OUTPUT Oxidation of the fuel generates NADH (from glycolysis) Fig. 6-09 INPUT OUTPUT Oxidation of the fuel generates NADH (from glycolysis) (to citric acid cycle) NAD NADH CoA Pyruvic acid loses a carbon as CO2 Acetic acid Acetic acid attaches to coenzyme A Acetyl CoA Pyruvic acid CO2 Coenzyme A

INPUT OUTPUT ATP Citric Acid Cycle Citric acid Acetic acid 2 CO2 Fig. 6-10 INPUT OUTPUT Citric acid Acetic acid 2 CO2 ADP  P ATP Citric Acid Cycle 3 NAD 3 NADH FAD FADH2 Acceptor molecule

Electron transport chain Fig. 6-11 Space between membranes H H H H H H H H Electron carrier H H H H H Protein complex Inner mitochondrial membrane FADH2 FAD Electron flow H 1 O2  2 H H2O 2 NADH NAD ADP  P ATP H H H H H Matrix Electron transport chain ATP synthase

Electron transport chain Fig. 6-11a Space between membranes H H H H H H H H Electron carrier H H H H H Protein complex Inner mitochondrial membrane FADH2 FAD Electron flow H 1 O2  2 H H2O 2 NADH NAD ADP  P ATP H H H H H ATP synthase Matrix Electron transport chain

Food Polysaccharides Fats Proteins Sugars Glycerol Fatty acids Fig. 6-12 Food Polysaccharides Fats Proteins Sugars Glycerol Fatty acids Amino acids Citric Acid Cycle Acetyl CoA Glycolysis Electron Transport ATP

Cytoplasm Mitochondrion 6 NADH 2 NADH 2 NADH 2 FADH2 Glycolysis 2 Fig. 6-13 Cytoplasm Mitochondrion 6 NADH 2 NADH 2 NADH 2 FADH2 Glycolysis 2 Acetyl CoA 2 Pyruvic acid Citric Acid Cycle Electron Transport Glucose Maximum per glucose: 2 ATP 2 ATP About 34 ATP About 38 ATP by direct synthesis by direct synthesis by ATP synthase

Fig. 6-14 INPUT OUTPUT 2 ADP 2 ATP  2 P Glycolysis 2 NAD 2 NAD 2 NADH 2 NADH 2 Pyruvic acid  2 H Glucose 2 Lactic acid

INPUT OUTPUT Glycolysis Glucose Fig. 6-14a INPUT OUTPUT 2 ADP 2 ATP  2 P Glycolysis 2 NAD 2 NAD 2 NADH 2 NADH 2 Pyruvic acid  2 H 2 Lactic acid Glucose

Fig. 6-14b

diffusion of lactic acid; diffusion of lactic acid Fig. 6-15 Battery Battery Force measured Force measured Frog muscle stimulated by electric current Solution allows diffusion of lactic acid; muscle can work for twice as long Solution prevents diffusion of lactic acid

Fig. 6-16 INPUT OUTPUT 2 ADP 2 ATP  2 P 2 CO2 released Glycolysis 2 NAD 2 NAD 2 NADH 2 NADH 2 Pyruvic acid  2 H Glucose 2 Ethyl alcohol Bread with air bubbles produced by fermenting yeast Beer fermentation

INPUT OUTPUT 2 ADP 2 ATP  2 P 2 CO2 released Glycolysis 2 NAD 2 NAD Fig. 6-16a INPUT OUTPUT 2 ADP 2 ATP  2 P 2 CO2 released Glycolysis 2 NAD 2 NAD 2 NADH 2 NADH 2 Pyruvic acid  2 H Glucose 2 Ethyl alcohol

Fig. 6-16b

First eukaryotic organisms 2.2 Fig. 6-17 Earth’s atmosphere O2 present in 2.1 First eukaryotic organisms 2.2 Atmospheric oxygen reaches 10% of modern levels 2.7 Atmospheric oxygen first appears Billions of years ago 3.5 Oldest prokaryotic fossils 4.5 Origin of Earth

First eukaryotic organisms 2.2 Fig. 6-17a Earth’s atmosphere O2 present in 2.1 First eukaryotic organisms 2.2 Atmospheric oxygen reaches 10% of modern levels 2.7 Atmospheric oxygen first appears Billions of years ago 3.5 Oldest prokaryotic fossils 4.5 Origin of Earth

Fig. 6-17b

C6H12O6  6 O2 6 CO2  6 H2O  ATP Glucose Oxygen Carbon dioxide Water Fig. 6-UN01 C6H12O6  6 O2 6 CO2  6 H2O  ATP Glucose Oxygen Carbon dioxide Water Energy

Glucose loses electrons Oxygen gains electrons (and hydrogens) Fig. 6-UN02 Oxidation Glucose loses electrons (and hydrogens) C6H12O6  6 O2 6 CO2  6 H2O Glucose Oxygen Carbon dioxide Water Reduction Oxygen gains electrons (and hydrogens)

Citric Acid Cycle Electron Transport Glycolysis ATP ATP ATP Fig. 6-UN03 Citric Acid Cycle Electron Transport Glycolysis ATP ATP ATP

Citric Acid Cycle Electron Transport Glycolysis ATP ATP ATP Fig. 6-UN04 Citric Acid Cycle Electron Transport Glycolysis ATP ATP ATP

Citric Acid Cycle Electron Transport Glycolysis ATP ATP ATP Fig. 6-UN05 Citric Acid Cycle Electron Transport Glycolysis ATP ATP ATP

C6H12O6 Sunlight O2 Cellular respiration CO2 H2O Fig. 6-UN06 Heat C6H12O6 Sunlight O2 ATP Cellular respiration Photosynthesis CO2 H2O

C6H12O6  6 O2 6 CO2  6 H2O  Approx. 38 ATP Fig. 6-UN07 C6H12O6  6 O2 6 CO2  6 H2O  Approx. 38 ATP

Glucose loses electrons (and hydrogens) Fig. 6-UN08 Oxidation Glucose loses electrons (and hydrogens) C6H12O6 CO2 Electrons (and hydrogens) ATP O2 H2O Reduction Oxygen gains electrons (and hydrogens)

Mitochondrion O2 6 NADH 2 NADH 2 NADH 2 FADH2 Glycolysis 2 Acetyl CoA Fig. 6-UN09 Mitochondrion O2 6 NADH 2 NADH 2 NADH 2 FADH2 Glycolysis 2 Acetyl CoA Citric Acid Cycle 2 Pyruvic acid Electron Transport Glucose 2 CO2 4 CO2 H2O About 34 ATP 2 ATP by direct synthesis by direct synthesis 2 ATP by ATP synthase About 38 ATP