(Kobe Univ. ) Takumi Nakano, Ryo Yamamoto, Shunji Kasahara

Slides:



Advertisements
Similar presentations
D.L. KOKKIN, N.J. REILLY, J.A. JOESTER, M. NAKAJIMA, K. NAUTA, S.H. KABLE and T.W. SCHMIDT Direct Observation of the c State of C 2 School of Chemistry,
Advertisements

Lecture 30 11/14/05. Spectrophotometry Properties of Light h = x J-s c = 3.00 x 10 8 m/s.
Stimulated Raman scattering If high enough powered radiation is incident on the molecule, stimulated Anti-Stokes radiation can be generated. The occurrence.
INTRO TO SPECTROSCOPIC METHODS (Chapter 6 continued ) Quantum-Mechanical Properties Of Light Photoelectric Effect Photoelectric Effect Energy States of.
HIGH RESOLUTION INFRARED SPECTROSCOPY OF N 2 O-C 4 H 2 AND CS 2 −C 2 D 2 DIMERS MAHDI YOUSEFI S. SHEYBANI-DELOUI JALAL NOROOZ OLIAEE BOB MCKELLAR NASSER.
Methyl Torsional Levels in 9-Methylanthracene
Anh T. Le and Timothy C. Steimle* The molecular frame electric dipole moment and hyperfine interaction in hafnium fluoride, HfF. Department of Chemistry.
LASER Induced Fluorescence of Iodine Eðlisefnafræði 5 – 30. mars 2006 Ómar Freyr Sigurbjörnsson.
First high resolution analysis of the 5 3 band of nitrogen dioxide (NO 2 ) near 1.3 µm Didier Mondelain 1, Agnès Perrin 2, Samir Kassi 1 & Alain Campargue.
FTIR Spectroscopy of the n4 bands of 14NO3 and 15NO3
IPC Friedrich-Schiller-Universität Jena 1 6. Fluorescence Spectroscopy.
Funded by: NSF Timothy C. Steimle, Fang Wang a Arizona State University, USA & Joe Smallman b, Physics Imperial College, London a Currently at JILA THE.
Supersonic Free-jet Quantum Cascade Laser Measurements of 4 for CF 3 35 Cl and CF 3 37 Cl and FTS Measurements from 450 to 1260 cm -1 June 20, 2008 James.
High Precision Mid-Infrared Spectroscopy of 12 C 16 O 2 : Progress Report Speaker: Wei-Jo Ting Department of Physics National Tsing Hua University
Fukuoka Univ. A. Nishiyama, A. Matsuba, M. Misono Doppler-Free Two-Photon Absorption Spectroscopy of Naphthalene Assisted by an Optical Frequency Comb.
Novel Applications of a Shape Sensitive Detector 2: Double Resonance Amanda Shirar Purdue University Molecular Spectroscopy Symposium June 19, 2008.
Fang Wang & Timothy C. Steimle Dept. Chem. & BioChem., Arizona State University, Tempe, AZ,USA The 65 th International Symposium on Molecular Spectroscopy,
Electronic Transitions of Palladium Monoboride and Platinum Monoboride Y.W. Ng, H.F. Pang, Y. S. Wong, Yue Qian, and A. S-C. Cheung Department of Chemistry.
ULTRAHIGH-RESOLUTION SPECTROSCOPY OF DIBENZOFURAN S 1 ←S 0 TRANSITION SHUNJI KASAHARA 1, Michiru Yamawaki 1, and Masaaki Baba 2 1) Molecular Photoscience.
Rotationally-resolved high-resolution laser spectroscopy of the B 2 E’ – X 2 A 2 ’ transition of 14 NO 3 radical 69th International Symposium on Molecular.
Electronic transitions of Yttrium Monoxide Allan S.-C. Cheung, Y. W. Ng, Na Wang and A. Clark Department of Chemistry University of Hong Kong OSU International.
62nd OSU International Symposium on Molecular Spectroscopy TA12 Laser Spectroscopy of Iridium Monoboride Jianjun Ye, H. F. Pang, A. M-Y. Wong, J. W-H.
Electronic Spectroscopy Hitachi-HiTec. Electronic Excitation Model A ~ X ~  Excitation (Absorption) Radiationless decay (vibrational relaxation)  Fluorescence.
LASER PHOTODISSOCIATION SPECTRA OF THE ANILINE-ARGON CATIONIC CLUSTER IN THE NEAR INFRARED T. PINO, S. DOUIN, Ph. BRECHIGNAC Laboratoire de Photophysique.
Development of a System for High Resolution Spectroscopy with an Optical Frequency Comb Dept. of Applied Physics, Fukuoka Univ., JST PRESTO, M. MISONO,
A NEW ANALYSIS OF A VERY OLD SPECTRUM: THE HIGHLY PERTURBED A 2  i – X 2  i BAND SYSTEM OF THE CHLORINE CATION (Cl 2 ) Mohammed A. Gharaibeh and Dennis.
Structure and excited-state dynamics of the S1 B3u‐S0 Ag states of pyrene through high-resolution laser spectroscopy Yasuyuki Kowaka We study the vibrational,rotational.
Rotational and Vibrational Energy Transfer from the First Overtone Stretch of Acetylene Keith Freel Jiande Han Michael C. Heaven.
Chuanxi Duan (段传喜) Central China Normal University Wuhan, China
High Precision Mid-IR Spectroscopy of 12 C 16 O 2 [10 0 1,02 0 1] I ← Band Near 2.7 µm Jow-Tsong Shy Department of Physics, National Tsing Hua University,
Triplet-Singlet Mixing in Si­ 3 : the 1 A A 2 Transition Ruohan Zhang and Timothy C. Steimle International Symposium on Molecular Spectroscopy 68.
D. Zhao, K.D. Doney, H. Linnartz Sackler Laboratory for Astrophysics, Leiden Observatory, University of Leiden, the Netherlands T he 3 μm Infrared Spectra.
A. Nishiyama a, K. Nakashima b, A. Matsuba b, and M. Misono b a The University of Electro-Communications b Fukuoka University High Resolution Spectroscopy.
Laser Spectroscopy of the C 1 Σ + – X 1 Σ + Transition of ScI ZHENWU LIAO, MEI YANG, MAN-CHOR CHAN Department of Chemistry, The Chinese University of Hong.
Yu-Shu Lin, Cheng-Chung Chen, and Bor-Chen Chang Department of Chemistry National Central University Chung-Li 32001, Taiwan ~ ~ Electronic Spectroscopy.
Laser spectroscopic study of CaH in the B 2 Σ + and D 2 Σ + state Kyohei Watanabe, Kanako Uchida, Kaori Kobayashi, Fusakazu Matsushima, Yoshiki Moriwaki.
Lineshape analysis of CH3F-(ortho-H2)n absorption spectra in 3000 cm-1 region in solid para-H2 Yuki Miyamoto Graduate School of Natural Science and Technology,
THE ANALYSIS OF 2ν3 BAND OF HTO
Max Planck Institute for the Structure and Dynamics of Matter
2 Univ. of Electro-Communications
Rovibrational spectrum of the Ar-NO complex in 5.3 μm region
Masaaki Baba (Kyoto University) Yosuke Semba Kazuto Yoshida
Carlos Cabezas and Yasuki Endo
The Cs2 a3Su+, 33Sg+, and 33Pg states
A.J. Barclay, S. Sheybani-Deloui, N. Moazzen-Ahmadi
Doppler-free two-photon absorption spectroscopy of vibronic excited states of naphthalene assisted by an optical frequency comb UNIV. of Electro-Communications.
The Near-IR Spectrum of CH3D
Resonant two-photon ionization spectroscopy of jet-cooled OsC
Optical Stark Spectroscopy and Hyperfine study of Gold Sulfide (AuS)
Two-Photon Absorption Spectroscopy of Rubidium
A. Barbe, M. R. De Backer-Barilly, Vl. G. Tyuterev, D. Romanini1, S
Metastable States Arising from the Ablation of Solid Copper
Kaitlin Womack, Taylor Dahms, Leah O’Brien Department of Chemistry
Tokyo Univ. Science Mitsunori Araki, Yuki Matsushita, Koichi Tsukiyama
Single Vibronic Level (SVL) emission spectroscopy of CHBr: Vibrational structure of the X1A and a3A  states.
Optical Stark Spectroscopy and Hyperfine study of Gold Sulfide (AuS)
HIGH RESOLUTION INFRARED SPECTRA OF TRIACETYLENE*
Bob Grimminger and Dennis Clouthier
Fourier transform microwave spectra of n-butanol and isobutanol
Laser spectroscopy and ab initio calculations on TaF
from W. Demtröder “Molecular Physics”
High resolution rovibrational spectroscopy of large molecules using infrared frequency combs and buffer gas cooling Bryan Changala1, Ben Spaun1, David.
Fourier Transform Emission Spectroscopy of CoH and CoD
High-resolution Laser Spectroscopy
A. M. Daly, B. J. Drouin, J. C. Pearson, K. Sung, L. R. Brown
Fourier Transform Infrared Spectral
HIGH RESOLUTION LASER SPECTROSCOPY OF NICKEL MONOBORIDE, NiB
from W. Demtröder “Molecular Physics”
71st ISMS UV Photodissociation Spectroscopy of Temperature-Controlled Hydrated Phenol Cluster Cation Itaru KURUSU, Reona YAGI, Yasutoshi KASAHARA, Haruki.
Chuanxi Duan (段传喜) Central China Normal University Wuhan, China
Presentation transcript:

(Kobe Univ. ) Takumi Nakano, Ryo Yamamoto, Shunji Kasahara HIGH-RESOLUTION LASER SPECTROSCOPY OF S1-S0 TRANSITION OF NAPHTHALENE: MEASUREMENT OF VIBRATIONALLY EXCITED STATE (Kobe Univ. ) Takumi Nakano, Ryo Yamamoto, Shunji Kasahara

Excited state dynamics IVR ISC absorption fluorescence phosphorescence S0 S1 S2 T1 IC: Internal conversion IVR: Intramolecular vibrational energy redistribution ISC: Intersystem crossing We observe the high-resolution spectrum to understand excited state dynamics.

Measurement of high-resolution spectrum Rotational-resolved high-resolution spectrum in UV-VIS region Assignments of rotational transitions Regularity of rotational lines Molecular constants in high accuracy Anomalies of rotational lines  Line position (energy shift)  Line width (broadening)  Zeeman effect (splitting) Molecular structure Dynamical process

Fluorescence excitation spectrum of naphthalene [1] D. L. Joo et al., J. Mol. Spectrosc. 215, 155 (2011) [2] M. H. Kabir et al., J. Chem. Phys. 119, 3691 (2003) [3] K. Yoshida et al., J. Chem. Phys. 130, 194304 (2009) [4] M. Okubo et al., J. Chem. Phys. 116, 9293 (2002) H. Kato et al., Bull. Chem. Soc. Jpn. 80, 456 (2007) a type b type S1-S0 S2-S0 435 cm-1 [1,2] 1390 cm-1 [3] 1380 cm-1 [3] 2570 cm-1 [3] 0 – 0 [1] 32000 33000 34000 35000 36000 37000 1559 cm-1 [4] Wavenumber / cm-1

Fluorescence excitation spectrum of naphthalene 2122 435 2570 1422 2867 1432 3068 S. M. Beck et al., J. Phys. Chem. 74, 43 (1981) a type b type S1-S0 S2-S0 435 cm-1 [1,2] 1390 cm-1 [3] 1380 cm-1 [3] 1422 cm-1 1432 cm-1 2570 cm-1 [3] 2122 cm-1 3068 cm-1 2866 cm-1 0 – 0 [1] 32000 33000 34000 35000 36000 37000 1559 cm-1 [4] Wavenumber / cm-1

I2 stabilized etalon marker Experimental setup Ar gas & sample Nd3+ :YVO4 laser Ring dye laser I2 stabilized etalon marker I2 cell Doubling cavity PM pulsed nozzle Vacuum chamber liquid N2 trap Photon counter Computer Magnet Slit

Fluorescence excitation spectrum of naphthalene 2122 435 2570 1422 2867 1432 3068 S. M. Beck et al., J. Phys. Chem. 74, 43 (1981) a type b type S1-S0 S2-S0 0 – 0 32000 33000 34000 35000 36000 37000 Wavenumber / cm-1

High-resolution spectrum of 0-0 band 32016 32015 32017 32018 32019 32020 32021 Obs. Calc.(Trot = 40 K, G(FWHM) = 0.0005 cm-1 a-type) Wavenumber / cm-1 Rotational lines were resolved

Molecular constants of 0-0 band S0 (v = 0) 0-0 band (previous work[1]) A / cm-1 0.10405207(16) 0.101470325(51) 0.101462295(60) B 0.041126892(27) 0.040498566(74) 0.040498715(31) C 0.0294838072(80) 0.028955573(79) 0.028955165(22) ΔK 1.87(32)×10-9 ― 1.82(11)×10-9 ΔJK 1.18(22)×10-9 1.751(55)×10-9 ΔJ 5.80(21)×10-10 5.704(80)×10-9 dK 1.37(17)×10-9 3.87(11)×10-9 dJ 1.59(10)×10-10 5.696(53)×10-10 T0 32018.5967(3) 32018.5870(2) band type A Assigned line 1043 3083 Std. Dev. 0.00020 0.00016 [1] D. L. Joo et al., J. Mol. Spectrosc. 215, 155 (2011)

High-resolution spectrum of 0-0 band 32016 32015 32017 32018 32019 32020 32021 Obs. Calc.(Trot = 40 K, G(FWHM) = 0.0005 cm-1 a-type) Wavenumber / cm-1

High-resolution spectrum of 0-0 band qPK- qPK+ J =33 J =32 J =31 Ka =1 Ka =0 32 31 30 2 1 31 30 29 3 2 30 29 28 4 3 Obs. Calc.(40 K) 32016.0 32016.1 32016.2 32016.3 Wavenumber / cm-1

Zeeman effect of 0-0 band H = 0.49 T H = 0 T J = 35 34 33 32 31 30 Wavenumber/ cm-1 32015.85 32015.90 32015.95 32016.00

Zeeman splittings are small. Zeeman effect of 0-0 band Ka= 0 (Kc=J) Zeeman Splitting / MHz J Zeeman splittings are small. Rotational quantum number dependence were found. These effects are observed other vibronic bands. H. Kato et al., Bull. Chem. Soc. Jpn. 80, 456 (2007) M. Okubo et al., J. Chem. Phys. 116, 9293 (2002) D. L. Joo et al., J. Mol. Spectrosc. 215, 155 (2011)

Fluorescence excitation spectrum of naphthalene 2122 435 2570 1422 2867 1432 3068 S. M. Beck et al., J. Phys. Chem. 74, 43 (1981) a type b type S1-S0 S2-S0 2122 cm-1 32000 33000 34000 35000 36000 37000 Wavenumber / cm-1

High-resolution spectrum of 000 + 2122 cm-1 band 34140 34142 34144 34141 34143 34139 34145 Obs. Calc.(Trot = 50 K, G(FWHM)= 0.0005 cm-1 b-type) Wavenumber / cm-1

Molecular constants of vibronic bands S0 (v = 0) 0-0 band 000 + 2122 cm-1 A / cm-1 0.10405207(16) 0.101462295(60) 0.10141594(47) B 0.041126892(27) 0.040498715(31) 0.04047379(48) C 0.0294838072(80) 0.028955165(22) 0.02894462(84) ΔK 1.87(32)×10-9 1.82(11)×10-9 ― ΔJK 1.18(22)×10-9 1.751(55)×10-9 ΔJ 5.80(21)×10-10 5.704(80)×10-9 dK 1.37(17)×10-9 3.87(11)×10-9 dJ 1.59(10)×10-10 5.696(53)×10-10 T0 32018.5870(2) 34141. 9434(2) band type A Assigned line 3083 1232 Std. Dev. 0.00015 0.0008

Energy shift of 000 + 2122 cm-1 band Eob - Ecal

Energy shift of 000 + 2122 cm-1 band Eob - Ecal Eob - Ecal

Fluorescence excitation spectrum of naphthalene 2122 435 2570 1422 2867 1432 3068 S. M. Beck et al., J. Phys. Chem. 74, 43 (1981) a type b type S1-S0 S2-S0 2866 cm-1 32000 33000 34000 35000 36000 37000 Wavenumber / cm-1

High-resolution spectrum of 000 + 2866 cm-1 band 34881 34882 34883 34884 34885 34886 Calc.(Trot = 10 K, G(FWHM) = 0.002 cm-1 a-type) Obs Wavenumber / cm-1

Molecular constants of vibronic bands S0 (v = 0) 0-0 band 000 + 2122 cm-1 000 + 2866 cm-1 A / cm-1 0.10405207(16) 0.101462295(60) 0.10141594(47) 0.101178(10) B 0.041126892(27) 0.040498715(31) 0.04047379(48) 0.040375(11) C 0.0294838072(80) 0.028955165(22) 0.02894462(84) 0.02895155(51) ΔK 1.87(32)×10-9 1.82(11)×10-9 ― ΔJK 1.18(22)×10-9 1.751(55)×10-9 ΔJ 5.80(21)×10-10 5.704(80)×10-9 dK 1.37(17)×10-9 3.87(11)×10-9 dJ 1.59(10)×10-10 5.696(53)×10-10 T0 32018.5870(2) 34141. 943361(51) 34884. 11130(53) band type A Assigned line 3083 1232 90 Std. Dev. 0.00016 0.00081 0.00268

High-resolution spectrum of 000 + 2866 cm-1 band 34881 34882 34883 34884 34885 34886 Calc.(Trot = 10 K, G(FWHM) = 0.002 cm-1 a-type) Obs Wavenumber / cm-1

High-resolution spectrum of 000 + 2866 cm-1 band 34882.8 34882.9 34883.0 34883.1 Calc.(Trot = 10 K, G(FWHM) = 0.002 cm-1 a-type) Obs Wavenumber / cm-1 - Rotational assignment: in progress - Large background signal - Energy shift?

Fluorescence excitation spectrum of naphthalene 2122 435 2570 1422 2867 1432 3068 S. M. Beck et al., J. Phys. Chem. 74, 43 (1981) a type b type S1-S0 S2-S0 3068 cm-1 32000 33000 34000 35000 36000 37000 Wavenumber / cm-1

High-resolution spectrum of 000 + 3068 cm-1 band 35080 35081 35082 35083 35084 35085 Calc.(Trot = 10 K, G(FWHM) = 0.002 cm-1 b-type) Obs Wavenumber / cm-1 - Large background signal - Rotational assignment: difficult.

Rotational assignment Summary 0-0 435 cm-1 2122 cm-1 2866 cm-1 3068 cm-1 Rotational assignment done In progress Difficult Energy shift none Several Many? Too many? Background small large We determined molecular constants of 0-0 band. The assign of 000 + 2866 cm-1 and 3068 cm-1 band are going on. In the 000 + 2122 cm-1 band, energy shifts were observed. Background signals of 2866cm-1 and 3068 cm-1 band are larger than lower vibrational state