Lecture 2. Relativistic Kinematics, part II

Slides:



Advertisements
Similar presentations
ON TIME An Introduction into the theory behind Albert Einsteins Special Relativity.
Advertisements

Classical Relativity Galilean Transformations
Physics Lecture Resources
Classical Doppler Shift Anyone who has watched auto racing on TV is aware of the Doppler shift. As a race car approaches the camera, the sound of its engine.
Postulates of Special Relativity The Relativity Postulate –The laws of physics are the same in every inertial reference frame The Speed of Light Postulate.
Theory of Special Relativity
Cutnell/Johnson Physics 7th edition
Wednesday, Feb. 4, 2015PHYS , Spring 2014 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #5 Wednesday, Feb. 4, 2015 Dr. Jaehoon Yu Einstein’s.
1 Special Relativity (Ch 37) Modern physics special relativity quantum mechanics Both were developed to explain the “few remaining puzzles” of classical.
SPECIAL RELATIVITY -Postulates of Special Relativity -Relativity of time –> time dilation -Relativity of length –> length contraction © 2005.
Hubble images a part of the Universe
Principle of special relativity Their is inconsistency between EM and Newtonian mechanics, as discussed earlier Einstein proposed SR to restore the inconsistency.
Special Relativity & General Relativity
Chapter 37 Special Relativity. 37.2: The postulates: The Michelson-Morley experiment Validity of Maxwell’s equations.
Time Dilation, Length Contraction and Doppler
Quiz 1 Each quiz sheet has a different 5-digit symmetric number which must be filled in (as shown on the transparency, but NOT the same one!!!!!) Please.
Special Relativity Classical Relativity 1,000,000 ms -1 ■ How fast is Spaceship A approaching Spaceship B? ■ Both Spaceships see the other approaching.
Resonance - a vibration of large amplitude in a mechanical or electrical system caused by a relatively small periodic stimulus of the same or nearly the.
2. Einstein's postulates in special theory of relativity
Physics 2112 Lecture 23 Electricity & Magnetism Lecture 23, Slide 1.
Copyright © 2010 Pearson Education, Inc. Lecture Outline Chapter 29 Physics, 4 th Edition James S. Walker.
Chapter 29 Relativity.
Announcements Homework: Supplemental Problems 2 nd Project is due at the final exam which is Tuesday May 5 at 1:30 – 3:30pm. A list of potential projects.
The Big Bang! Chapter 2.2. Origin of the Universe Big Bang Big Bang occurred 15 billion years ago occurred 15 billion years ago model for the beginning.
Sayfa 1 EP228 Particle Physics Department of Engineering Physics University of Gaziantep Dec 2014 Topic 5 Cosmic Connection Course web page
Theory on the Formation of the Universe
IB Physics – Relativity Relativity Lesson 2 1.Time dilation 2.Lorentz Factor 3.Proper time 4.Lorentz contraction 5.Proper length 6.Twin paradox and symmetric.
A lecture series on Relativity Theory and Quantum Mechanics The Relativistic Quantum World University of Maastricht, Sept 24 – Oct 15, 2014 Marcel Merk.
The Death of High Mass Stars. Quiz #8 On the H-R diagram, a high mass star that is evolving off the main sequence will become redder in color and have.
1 Experimental basis for special relativity Experiments related to the ether hypothesis Experiments on the speed of light from moving sources Experiments.
Page 1 Phys Baski Relativity I Topic #9: Special Relativity I Transformation of Variables between Reference Frames –Non-relativistic Galilean Transformation.
Special relativity.
Chapter 26 Relativity © 2006, B.J. Lieb
Special Relativity: “all motion is relative”
The Birth of the Universe. Hubble Expansion and the Big Bang The fact that more distant galaxies are moving away from us more rapidly indicates that the.
The Theory of Special Relativity Ch 26. Two Theories of Relativity Special Relativity (1905) –Inertial Reference frames only –Time dilation –Length Contraction.
Time Dilation We can illustrate the fact that observers in different inertial frames may measure different time intervals between a pair of events by considering.
Education Physics Deparment UNS
Consequences of Lorentz Transformation. Bob’s reference frame: The distance measured by the spacecraft is shorter Sally’s reference frame: Sally Bob.
Physics Lecture 2 1/26/ Andrew Brandt Monday January 26, 2009 Dr. Andrew Brandt 1.Special Relativity 2.Galilean Transformations 3.Time.
Light 1)Exam Review 2)Introduction 3)Light Waves 4)Atoms 5)Light Sources October 14, 2002.
Special Relativity I wonder, what would happen if I was travelling at the speed of light and looked in a mirror?
Einstein’s theory of special relativity makes some very bizarre and counter-intuitive predictions. Anything that violates common sense like this must.
Astronomy 1143 – Spring 2014 Lecture 18: Special Relativity.
Physics 1 Revision Lesson 6 Sound and the Red shift.
My Chapter 26 Lecture.
The Expanding Universe. The Hubble Law The Hubble constant H o is one of the most important numbers in cosmology because it may be used to estimate the.
Physics 1202: Lecture 19 Today’s Agenda Announcements: –Lectures posted on: –HW assignments, etc.
Unit 13 Relativity.
Consequences of Special Relativity Simultaneity: Newton’s mechanics ”a universal time scale exists that is the same for all observers” Einstein: “No universal.
THE BIG BANG THEORY The Expanding Universe. Review Human demonstration.
Length Contraction. Relative Space  An observer at rest measures a proper time for a clock in the same frame of reference.  An object also has a proper.
Chapter 37 Relativity Relativity is an important subject that looks at the measurement of where and when events take place, and how these events are measured.
Special relativity Part II Recall Einstein’s Postulates (1905) First Postulate –The laws of physics are the same in any inertial frame of reference (principle.
1 PHYS 3313 – Section 001 Lecture #5 Wednesday, Sept. 11, 2013 Dr. Jaehoon Yu Time Dilation & Length Contraction Relativistic Velocity Addition Twin Paradox.
12 OUR PLACE IN THE UNIVERSE The parallax method Review knowledge and understanding of cosmology Learn how to use the parallax method to determine distances.
Visual Guide to Special and General Relativity. This is about to get weird…
Consequences of Relativism SPH4U. Wind Back the Clock Two consequences of relativism discussed: To a stationary observer, time appears to slow down in.
Galileo’s Relativity: Text: The laws of mechanics are the same in all inertial reference frames. More general: The laws of mechanics are the same in all.
X’ =  (x – vt) y’ = y z’ = z t’ =  (t – vx/c 2 ) where   1/(1 - v 2 /c 2 ) 1/2 Lorentz Transformation Problem: A rocket is traveling in the positive.
Option D. 3. Universe was born around 13.8 billion years ago in process called Big Bang In the beginning, all matter & energy in the entire universe was.
PHYS344 Lecture 6 Homework #1 Due in class Wednesday, Sept 9 th Read Chapters 1 and 2 of Krane, Modern Physics Problems: Chapter 2: 3, 5, 7, 8, 10, 14,
Some places where Special Relativity is needed
The Relativistic Quantum World
Relativity H7: General relativity.
The Big Bang The Big Bang
The Big Bang The Big Bang
Origin of Universe - Big Bang
Chapter 37 Special Relativity
Presentation transcript:

Lecture 2. Relativistic Kinematics, part II Outline: Length Contraction Relativistic Velocity Addition Relativistic Doppler Effect “Red shift” in the Universe

Relativistic effects: length contraction Question : how long does the signal take to complete the round trip? K0 mirror K An observer in the car’s rest RF : - the proper time interval An observer on the ground : These intervals are related by the time dilation formula: “Moving objects are shortened in the direction of motion”

Length Contraction (cont’d) Of course, the same result follows directly from L.Tr.: Proper length L0 : the length of an object measured in its rest RF ( ). K0 An observer in the RF K moving with respect to the RF K0 with the velocity V directed parallel to the meter stick, measures its length. In order to do that, he/she finds two points x1 and x2 in his/her RF that would simultaneously coincide with the ends of the moving stick (t1 =t2). Comment It’s easier to write L.Tr. for the “proper” length interval in the right-hand side: K observer - the end positions are measured simultaneously in K - moving objects are contracted in the direction of their motion Compare:

Length contraction (cont’d) - moving objects are contracted in the direction of their motion 10 To observe this effect, the relative speed of the reference frames should be large. For the fastest spacecraft, the speed is ~10-4c, and the effect is of an order of 10-8. K 20 Contraction occurs only in the direction of relative motion of RFs! K’ disc at rest the same disc as seen by observer K’

Recapitulation: decay of cosmic-ray muons Muon – an electrically charged unstable elementary particle with a rest energy ~ 207 times greater than the rest energy of an electron. The muon has an average half-life of 2.2 10-6 s. Muons are created at high altitudes due to collisions of fast cosmic-ray particles (mostly protons) with atoms in the Earth atmosphere. (Most cosmic rays are generated in our galaxy, primarily in supernova explosions) N0– the number of muons generated at high altitude In the muon’s rest frame By ignoring relativistic effects (wrong!), we get the decay length: ~20 km altitude In fact, the decay length is much greater, the muons can be detected even at the sea level! Because of the time dilation, in the RF of the lab observer the muon’s lifetime is: N – the number of muons measured in the sea-level lab

Decay of cosmic-ray muons in the muon’s RF Let’s reconsider the same situation, but now our observer moves with the muon (the muon’s rest IRF) N0– the number of muons generated at high altitude We can re-interpret this situation in terms of the length contraction: The life-time in the rest frame: In the muon’s rest frame, the distance to the Earth (~20 km in the Earth’s RF) is significantly shortened: ~20 km altitude The travel time N – the number of muons measured in the sea-level lab becomes comparable with the muon life-time. Thus, again, there is a considerable number of muons (the same as we’ve calculated in the lab RF) that can be detected at the sea level.

Problems 1. The nearest star to the Earth is Proxima Centauri, 4.3 light-years away. - at what constant speed must a spacecraft travel from the Earth if it is to reach the star in 2.5 years, as measured by travelers on the spacecraft? - how long does this trip take according to earth observers? Consider two IRFs, K (the Earth) and K’ (the rest RF of the spacecraft). By astronaut's reckoning (K’), the distance to the star is contracted: K K’ and the time of travel is 4.3 years According to earth observers: 2. Consider a disc at rest. We know that the “circumference/diameter” ratio is . Now the disc rotates around its center. If one applies the Lotentz length contraction to the disc, the result would be puzzling: the circumference “shrinks” while the diameter (which is normal to the velocity) remains intact, so “circumference/diameter”   ! What’s going on ???

Problem Imagine an alien spaceship traveling so fast that it crosses our galaxy (whose rest diameter is 100,000 light-years) in only 100 years of spaceship time. Observers at rest in the galaxy would say that this is possible because the ship’s speed  is so close to 1 that the proper time it measures between its entry into and departure from the galaxy is much shorter than the galaxy-frame coordinate time (~100,000 ly) between those events. Find the exact value of the speed  that the aliens must have to cross the galaxy in 100 years. and so on… How does it look to the aliens? To them, their clocks are running normally, but the galaxy, which moves backward relative to them at speed  1, is Lorentz contracted. What is the galaxy’s size by aliens’ reckoning?

Relativistic Velocity Addition K observer IRF K: a particle moves a distance dx in a time dt K’ IRF K’: a particle moves a distance dx’ in a time dt’ “+” – anti-parallel “-” - parallel - Galilean velocity addition Speed of light is the largest speed in nature, no body nor any signal can travel with the speed greater than c.

Problems K K’ K Yes: 0.83c > 0.75c K’ No: 0.71c < 0.75c 1. A person on a rocket traveling at 0.6c (with respect to the Earth RF) observes a meteor passing him at a speed he measures as 0.6c. How fast is the meteor moving with respect to the Earth? IRF K (rocket): IRF K’ (Earth) moves with respect to K with K Galilean velocity addition: K’ Relativistic velocity addition: 2. As the outlaws escape in their getaway car, which goes 3/4c, the police officer fires a bullet from the pursuit car, which only goes 1/2c. The muzzle velocity of the bullet (relative to the gun) is 1/3c. Does the bullet reach its target (a) according to Galileo, (b) according to Einstein? K Yes: 0.83c > 0.75c IRF K (gun) K’ IRF K’ (Earth) Solve the same problem using IRF K’’ (getaway car). No: 0.71c < 0.75c

Doppler Effect for Sound air (the medium where the waves propagate) observer source of sound v – the speed of an observer with respect to air V – the speed of the source of sound with respect to air f0 – the frequency of sound in the rest frame of the source f – the frequency of sound heard by an observer “+” observer moves toward the source “-” observer moves away from the source “-” source moves toward the observer “+” source moves away from the observer

Transverse Doppler Effect for Light Doppler effect for light - a change in the observed light frequency due to a relative motion of the light source and an observer (no special RF associated with the medium where light propagates!): light wave fronts K 1. Transverse Doppler effect observer - the period of oscillations of the e.-m. field in the rest RF of the source K (the “proper” time interval) K’ - the period of oscillations in the RF of the moving observer f is always smaller than f0 – “red shift” (shift to lower frequencies) The origin of the transverse Doppler effect is time dilation, this is a pure relativistic effect, no counterpart in classical mechanics.

Longitudinal Doppler Effect for Light 10 The light source and the observer move away from each other. K light observer V is the velocity of the relative motion of an observer with respect to the light source. K’ an extra time needed for the next wave front to reach an observer - the same time dilation as in the case of the transverse Doppler Effect - “red shift” 20 The light source and the observer approach each other. - “blue shift” (shift toward higher frequencies) The most frequent encounter with Doppler effect in light (microwave): police radar speed detectors (relativistic effects are negligible)

Problem A spaceship approaches an asteroid and sends out a radio signal with proper frequency 6.5x109 Hz. The signal bounces off the asteroid’s surface and returns shifted by 5x104 Hz. What is the relative speed of the spaceship and the asteroid? In this situation, there Doppler shift occurs twice. Firstly, the original frequency is received by an asteroid as Secondly, the spaceship receives the reflected signal with the frequency (the asteroid is the “secondary” source of light)

the horizon of visibility = infinite red shift Hubble’s Law (1929) The Universe expands: the larger the distance to an object, the larger the (relative) speed. By measuring the red shift of (identifiable) spectral lines, one can calculate the recessional speed of the light source with respect to the Earth’s observer. According to Hubble's Law, there is a direct proportionality (at least at not too large distances) between the velocity and the distance to the source: V - the observed velocity of the galaxy away from us H0 - Hubble's "constant" (units: s-1) d - the distance to the galaxy (1 Megaparsec=3106 light-yrs) Most recent measurements of H0 ~ 71 ± 2 (km/s)/Mpc. Hubble’s constant gives us the age of the Universe 0: R c0 the horizon of visibility = infinite red shift now t

Extreme “red shifts”: quasars and CMBR Quasars, very bright objects (like 100-10,000 our Galaxies) of a very small size (10-4 of our Galaxy size), believed to be supermassive black holes in the nuclei of distant galaxies. Distance: (2-10)109 light-years [~ (0.8-3)103 Mpc]. Doppler shift: f/f ~0.1-6.4 (!) Cosmic Microwave Background Radiation (CMBR) In the standard Big Bang model, the radiation is decoupled from the matter in the Universe about 300,000 years after the Big Bang, when the temperature dropped to the point where neutral atoms form (T~3000K). At this moment, the Universe became transparent for the “primordial” photons. This radiation is coming from all directions and its spectrum is quite distinct from the radiation from stars and galaxies). Currently, the energy of the CMB photons is “red shifted” to ~ 3K (f = f0/1000 !). The sub-mm/THz range contains ~ half of the total luminosity of the Universe and 98% of all the photons emitted since the Big Bang. R. Wilson A. Penzias Nobel 1978 Mather, Smoot, Nobel 2006