Optical Stark Spectroscopy and Hyperfine study of Gold Sulfide (AuS)

Slides:



Advertisements
Similar presentations
High Resolution Laser Induced Fluorescence Spectroscopic Study of RuF Timothy C. Steimle, Wilton L. Virgo Tongmei Ma The 60 th International Symposium.
Advertisements

MEASUREMENT OF HYPERFINE STRUCTURE AND PERMANENT ELECTRIC DIPOLE MOMENTS IN THE ELECTRONIC SPECTRUM OF IRIDIUM MONOHYDRIDE AND DEUTERIDE C. LINTON, A.
D.L. KOKKIN, N.J. REILLY, J.A. JOESTER, M. NAKAJIMA, K. NAUTA, S.H. KABLE and T.W. SCHMIDT Direct Observation of the c State of C 2 School of Chemistry,
Electronic transitions of ScP N. Wang, Y. W. Ng, K. F. Ng, and A. S.-C. Cheung Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong.
E LECTRONIC T RANSITIONS OF S CANDIUM M ONOXIDE NA WANG, Y.W. NG, and A. S-C. CHEUNG The University of Hong Kong 109 Pokfulam Road, Hong Kong SAR, P.R.China.
Application of 2D fluorescence spectroscopy to Metal Containing Species Damian L. Kokkin and Timothy Steimle. Department of Chemistry and Biochemistry.
Supersonic Jet Spectroscopy on TiO 2 Millimeter-wave Spectroscopy of Titanium Monoxide and Titanium Dioxide 63 rd International Symposium on Molecular.
Anh T. Le and Timothy C. Steimle* The molecular frame electric dipole moment and hyperfine interaction in hafnium fluoride, HfF. Department of Chemistry.
Anh T. Le and Timothy C. Steimle The electric dipole moment of Iridium monosilicide, IrSi Department of Chemistry and Biochemistry, Arizona State University,
Stark Study of the F 4     X 4  7/2 (1,0) band of FeH Jinhai Chen and Timothy C. Steimle Dept. of Chemistry& BioChem, Arizona State University,
Funded by: NSF Timothy C. Steimle, Fang Wang a Arizona State University, USA & Joe Smallman b, Physics Imperial College, London a Currently at JILA THE.
Laser Excitation and Fourier Transform Emission Spectroscopy of ScS R. S. Ram Department of Chemistry, University of Arizona, Tucson, AZ J. Gengler,
Pump/Probe Microwave-Optical Double Resonance (PPMODR) Study of Tungsten Carbide( WC) a and Platinum Carbide(PtC) b Funded by Fang Wang, Chengbing Qin,
The 68 th International Symposium on Molecular Spectroscopy, June 2013 Fang Wang a, Allan Adam b and Timothy C. Steimle Dept. Chem. & BioChem., Arizona.
Optical Zeeman Spectroscopy of the (0,0) bands of the B 3  -X 3  and A 3  -X 3  Transitions of Titanium Monoxide, TiO Wilton L. Virgo, Prof. Timothy.
THE ZEEMAN EFFECT IN THE OPTICAL SPECTRUM OF MANGANESE MONOHYDRIDE: MnH. Jamie Gengler and Timothy C. Steimle Department of Chemistry and Biochemistry.
High-accuracy ab initio calculation of metal quadrupole-coupling parameter Lan Cheng, John Stanton, and Jürgen Gauss Department of Chemistry, University.
Electronic Transition of Ruthenium Monoxide Na Wang, Y. W. Ng and A. S.-C. Cheung Department of Chemistry The University of Hong Kong.
Electronic Spectroscopy of Palladium Dimer (Pd 2 ) 68th OSU International Symposium on Molecular Spectroscopy Yue Qian, Y. W. Ng and A. S-C. Cheung Department.
Fang Wang & Timothy C. Steimle Dept. Chem. & BioChem., Arizona State University, Tempe, AZ,USA The 65 th International Symposium on Molecular Spectroscopy,
The 66 th International Symposium on Molecular Spectroscopy, June 2010 Fang Wang,Anh Lee and Timothy C. Steimle Dept. Chem. & BioChem., Arizona State University,
Electronic Transitions of Palladium Monoboride and Platinum Monoboride Y.W. Ng, H.F. Pang, Y. S. Wong, Yue Qian, and A. S-C. Cheung Department of Chemistry.
Adam J. Fleisher Justin W. Young David W. Pratt Department of Chemistry University of Pittsburgh Internal dynamics of water attached to a photoacidic substrate:
Rotationally-resolved high-resolution laser spectroscopy of the B 2 E’ – X 2 A 2 ’ transition of 14 NO 3 radical 69th International Symposium on Molecular.
Electronic transitions of Yttrium Monoxide Allan S.-C. Cheung, Y. W. Ng, Na Wang and A. Clark Department of Chemistry University of Hong Kong OSU International.
The 67 th International Symposium on Molecular Spectroscopy, June 2012 Ruohan Zhang, Chengbing Qin a and Timothy C. Steimle Dept. Chem. & BioChem., Arizona.
62nd OSU International Symposium on Molecular Spectroscopy TA12 Laser Spectroscopy of Iridium Monoboride Jianjun Ye, H. F. Pang, A. M-Y. Wong, J. W-H.
Zeeman Spectroscopy of CaH Jinhai Chen, J. Gengler &T. C. Steimle, The 60 th International Symposium on Molecular Spectroscopy.
61 st Symposium on Molecular Spectroscopy June 19, 2006  -doubling in High Angular Momentum States: High Resolution Spectroscopy of CoF (X 3  i ) M.
Optical Zeeman Spectroscopy of Iron Monohydride, FeH Jinhai Chen, Timothy C. Steimle Department of Chemistry and Biochemistry, Arizona State University.
Triplet-Singlet Mixing in Si­ 3 : the 1 A A 2 Transition Ruohan Zhang and Timothy C. Steimle International Symposium on Molecular Spectroscopy 68.
STARK AND ZEEMAN EFFECT STUDY OF THE [18.6]3.5 – X(1)4.5 BAND OF URANIUM MONOFLUORIDE, UF COLAN LINTON, ALLAN G. ADAM University of New Brunswick TIMOTHY.
Optical Stark Spectroscopy and Hyperfine study of Gold Chrolride (AuCl) Ruohan Zhang and Timothy C. Steimle International Symposium on Molecular Spectroscopy.
Magnetic g e -factors and electric dipole moments of Lanthanide monoxides: PrO * Hailing Wang, and Timothy C. Steimle Department of Chemistry and Biochemistry.
HIGH RESOLUTION SPECTROSCOPY OF THE B 2 A 1 - X 2 A 1 TRANSITION OF CaCH 3 and SrCH 3 P. M. SHERIDAN, M. J. DICK, J. G. WANG AND P. F. BERNATH University.
THE J = 1 – 0 ROTATIONAL TRANSITIONS OF 12 CH +, 13 CH +, AND CD + T. Amano Department of Chemistry and Department of Physics and Astronomy The University.
Funded by: NSF-Exp. Timothy C. Steimle Hailing Wang & Anh Le Dept. Chem. & BioChem., Arizona State University, Tempe, AZ,USA The A 2  -X 2  + Band System.
The optical spectrum of SrOH revisited: Zeeman effect, high- resolution spectroscopy and Franck- Condon factors TRUNG NGUYEN, DAMIAN L KOKKIN, TIMOTHY.
* Funded by NSF. Xiujuan Zhuang and Timothy C. Steimle* Department of Chemistry and Biochemistry Arizona State University, Tempe,AZ Neil Reilly,
A. Nishiyama a, K. Nakashima b, A. Matsuba b, and M. Misono b a The University of Electro-Communications b Fukuoka University High Resolution Spectroscopy.
THE QUINTESSENTIAL BOND OF MODERN SCIENCE. THE DETECTION AND CHARACTERIZATION OF DIATOMIC GOLD SULFIDE, AuS. DAMIAN L KOKKIN, RUOHAN ZHANG, TIMOTHY STEIMLE.
The 69 th International Symposium on Molecular Spectroscopy, June 2014 U. Illinois Champagne-Urbanna, Timothy C. Steimle, Hailing Wang a and Ruohan Zhang.
The 61 th International Symposium on Molecular Spectroscopy. ‘06 Funded by: NSF- Exp. Phys. Chem Mag. Hyperfine Interaction in 171 YbF and 173 YbF Timothy.
1 m Tungsten Carbide Spectroscopy for electron EDM Measurement Jeongwon Lee June 23, 2011 Jinhai Chen, and Aaron E. Leanhardt Department of Physics, University.
BORONYL MIMICS GOLD: A PHOTOELECTRON SPECTROSCOPY STUDY Tian Jian, Gary V. Lopez, Lai-Sheng Wang Department of Chemistry, Brown University International.
Fourier-transform microwave spectroscopy of the CCCCl radical Takashi Yoshikawa, Yoshihiro Sumiyoshi, and Yasuki Endo Graduate School of Arts and Sciences,
Optical Frequency Comb Referenced Sub-Doppler Resolution Difference-Frequency-Generation Infrared Spectroscopy K. Iwakuni, S. Okubo, H. Nakayama, and H.
Funded by: NSF-Exp. Tongmei Ma & Timothy C. Steimle Dept. Chem. & BioChem., Arizona State University, Tempe, AZ,USA Optical Zeeman Spectroscopy of ytterbium.
Rotational spectra of C2D4-H2S, C2D4-D2S, C2D4-HDS and 13CH2CH2-H2S complexes: Molecular symmetry group analysis Mausumi Goswami and E. Arunan Inorganic.
62nd International Symposium on Molecular Spectroscopy, Columbus, Ohio, June 2007 The Permanent Electric Dipole Moment and Magnetic g-factors of Neodymium.
Spectroscopy in support of parity nonconservation measurements: the A2Π-X2Σ+(0,0) of Barium Monofluoride Anh T. Le, Sarah Frey and Timothy C. Steimle Department.
Doppler-free two-photon absorption spectroscopy of vibronic excited states of naphthalene assisted by an optical frequency comb UNIV. of Electro-Communications.
Optical Stark Spectroscopy and Hyperfine study of Gold Sulfide (AuS)
Experimental Mapping of the Absolute Value of the Transition Dipole Moment Function μe(R) of the Na2 A1Σu+ - X1Σg+ Transition E. Ahmed1, B. Beser1, P.
Timothy C. Steimle , T. Maa, S. Muscarella, and Damian Kokkin
Metastable States Arising from the Ablation of Solid Copper
Single Vibronic Level (SVL) emission spectroscopy of CHBr: Vibrational structure of the X1A and a3A  states.
Spectroscopic Research of Pt + NH3
Jinjun Liu, Ming-Wei Chen, John T. Yi,
Optical Zeeman Spectroscopy of Calcium Fluoride, CaF
New Measurements of the Hyperfine Interactions and Dipole Moment of KI
MOLECULAR BEAM OPTICAL ZEEMAN SPECTROSCOPY OF VANADIUM MONOXIDE, VO
Laser spectroscopy and ab initio calculations on TaF
Fourier Transform Emission Spectroscopy of CoH and CoD
HIGH RESOLUTION LASER SPECTROSCOPY OF NICKEL MONOBORIDE, NiB
Experimental Measurement of the Induced Dipole Moment of an Isolated Molecule in Its Ground and Electronically Excited States. Indole and Indole-H2O.*
Michael A. Flory Shawn K. McLamarrah Lucy M. Ziurys
OBSERVATION OF LEVEL-SPECIFIC PREDISSOCIATION RATES IN S1 ACETYLENE
DeWayne T. Halfen and Lucy M. Ziurys Department of Chemistry
Presentation transcript:

Optical Stark Spectroscopy and Hyperfine study of Gold Sulfide (AuS) Ruohan Zhang and Timothy C. Steimle International Symposium on Molecular Spectroscopy 71th Meeting (UIUC) June 20-24, 2016

Gold-Sulfur Bonding Au-S bonding Au-S cites Many reviews have appeared describing the study and use of the gold-thiol systems in molecular biology, inorganic chemistry, self-assembled monolayers and molecular electronics. Much of this work has been done to understand the interaction only on the nanoscale.

Previous studies on AuS(very few): Photoelectron Spectroscopy(AuS-): Prof. Lineberger’s group, J. Phys. Chem. A, 108, 11307(2004). Prof. L.-S. Wang’s group, J. Am. Chem. Soc., 130, 9156(2008). Prof. L.-S. Wang’s group, J. Phys. Chem. Lett., 6, 637(2015). Theoretical work: Z. J. Wu, J. Phys. Chem. A, 109, 5951(2005). DFT P. Schwerdtfeger et al, J. Phys. Chem, 91, 1762(1989) Rel-HF E. Kraka et al, Croat. Chem. Acta, 82, 233(2009) DFT dipole moment Prof. Cheng, John Hopkins University Ab initio calculation on dipole moment Electronic Spectroscopy(our group): Low-resolution & High-resolution

Previous work(our group): Low-resolution study on AuS: D. Kokkin; R. Zhang; T. Stemle; I. Wyse; B. Pearlman; T. Varberg, J. Phys. Chem. A, 2015, 119 (48) AuS molecular orbital(MO) diagram: Groud state: (1s)2(1p)4(1d)4(2s)2(2p*)3  X2P Excited states: (1s)2(1p)4(1d)4(2s)1(2p*)4  A2S+ (1s)2(1p)4(1d)4(2s)2(2p*)2(3s*)1 a4S, B2S-, C2D, D2S Macalester (Prof. Varberg)) ASU A B C D

Optical Stark Spectroscopy Experimental Setup High-resolution spectrometer Linewidth ~30MHz Optical Stark Spectroscopy PMT Gated photon counter Laser induced fluorescence(LIF) Ablation laser(532nm) Pulse valve OCS in Argon Well collimated cold molecular beam, <15 K skimmer Stark plates Au rod CW-dye laser Source chamber Detection chamber Diffusion pump II Diffusion pump I Background pressure (10-6 torr)

High-resolution Spectra B2SX2P3/2 R1(2.5) SR21(2.5)

Hyperfine Structure A B C D B D + C A a b c d - d c b a +/-

The effective Hamiltonian: Field Free Analysis: The effective Hamiltonian: X2P3/2 : Heff= BJ2+ Hmhf (Au) + Hquad(Au) B2S-: Heff= Tv’v’’ +BN2 +(g+gDN2)N·S+Hmhf (Au) + Hquad(Au) The magnetic hyperfine Hamiltonian (not Λ-doubling dependent) Hmhf= aI·L+bI·S+cIzSz One Ω component Frosch and Foley terms Hmhf= [aLz+(b+c) Sz]Iz= [aLz+(bF+ 𝟐 𝟑 c) Sz]Iz =hWIz h3/2(2P)=a+(1/2)(bF+c), The nuclear-electric quadrupole interactions: Matrix representation Diagonalization Transition wavenumbers Energies Fitting procedure: ~200 data Fitted Parameters Observed transitions

Results X2P3/2 B” 0.13155(1) D”(×107) 0.64(1) h3/2” -0.00261(5) eq0Q” Fitted field-free parameters( in cm-1) X2P3/2 B” 0.13155(1) D”(×107) 0.64(1) h3/2” -0.00261(5) eq0Q” 0.0027(1) Au S B2S B’ 0.12347(1) D’ (×107) 0.54(1) g ’ 0.13640(6) gD ’(×105) -1.18(6) bF’ -0.0216(4) c’ 0.027(1) eq0Q’ 0.0062(4) T00’ 15638.0666(2) Large spin-rotation interaction(mixing of states) Large hyperfine interaction in the excited states RMS = 0.0009 cm-1

AuS Stark measurement Electric dipole moment(mel) Challenges: 0.2 cm-1 Electric dipole moment(mel) Previous theoretical calculation: For ground state(X2P): mel1=4.69 D; mel2=2.63 D Prediction from Prof. Cheng’s work: mel=2.44 D Q1(5.5) Q1(4.5) RQ21(12.5) QP21(2.5) Challenges: RQ21(12.5) F”=4→F’=3 Complicate and congested hyperfine features; Numerous splitting features caused by higher F values P. Schwerdtfeger et al, J. Phys. Chem, 91, 1762(1989) E. Kraka et al, Croat. Chem. Acta, 82, 233(2009)

Stark measurements F’ MF’ a b c d e f A B C D 3 b c d a e f MJ” F” +3 To -3 3 b c d a e f MJ” F” -5/2 -3/2 B C D 1 A -1/2 2 3 +1/2 4 F”=4→F’=3 +3/2 +5/2

Results Stark shift Dipole moments 45 data RMS = 13 MHz X2P3/2 Experimental Theoretical ASU 2.161 ± 0.055 Massey1 4.69 Southern Methodist2 2.63 (unit: Debye) JHU 2.44 mel/re Gold-containing molecules mel (Debye) re(A) mel /re(D/A) AuO 2.93(8) 1.853 1.58 AuF 4.13(2) 1.924 2.15 AuS 2.16(5) 1.00 AuCl 3.69(2) 2.205 1.67 AuF 4 AuO 3 AuCl 2 AuS 1 P. Schwerdtfeger et al, J. Phys. Chem, 91, 1762(1989); E. Kraka et al, Croat. Chem. Acta, 82, 233(2009); T. Okabayashi et al, Chem. Phys. Let. 43, 223(2005); M. Gerry et al, J. Am. Chem. Soc., 122, 1560(2000), M. Gerry et al, J. Mol. Spectroc. 203, 105(2000). 1.0 2.0 3.0 4.0 Electronegativity

Conclusion and Future work The high-resolution spectra of the B2S--X2P3/2 transitions of AuS have been recorded by the first time; The spectroscopic parameters included the hyperfine parameters of this stated have been determined; The electric dipole moment of AuS has been determined; The Zeeman effect of AuS will be determined in the future.

Acknowledgements Arizona State University John Hopkins University Timothy C. Steimle Trung Nguyen John Hopkins University Lan Cheng

Thank you!