INFORMS 2011 Annual Meeting November 12-16, Charlotte, NC Modeling Transit in Regional Dynamic Travel Models: FAST-TrIPs Mark Hickman, Hyunsoo Noh, Neema.

Slides:



Advertisements
Similar presentations
Symantec 2010 Windows 7 Migration Global Results.
Advertisements

EE384y: Packet Switch Architectures
Unit-iv.
© 2008 Pearson Addison Wesley. All rights reserved Chapter Seven Costs.
Copyright © 2003 Pearson Education, Inc. Slide 1 Computer Systems Organization & Architecture Chapters 8-12 John D. Carpinelli.
Cognitive Radio Communications and Networks: Principles and Practice By A. M. Wyglinski, M. Nekovee, Y. T. Hou (Elsevier, December 2009) 1 Chapter 12 Cross-Layer.
Copyright © 2011, Elsevier Inc. All rights reserved. Chapter 6 Author: Julia Richards and R. Scott Hawley.
Author: Julia Richards and R. Scott Hawley
Properties Use, share, or modify this drill on mathematic properties. There is too much material for a single class, so you’ll have to select for your.
UNITED NATIONS Shipment Details Report – January 2006.
and 6.855J Cycle Canceling Algorithm. 2 A minimum cost flow problem , $4 20, $1 20, $2 25, $2 25, $5 20, $6 30, $
and 6.855J Spanning Tree Algorithms. 2 The Greedy Algorithm in Action
Scalable Routing In Delay Tolerant Networks
1 RA I Sub-Regional Training Seminar on CLIMAT&CLIMAT TEMP Reporting Casablanca, Morocco, 20 – 22 December 2005 Status of observing programmes in RA I.
Regional Routing Model Review: C) Model Formulation and Scenario Analysis Frank Southworth Oak Ridge National Laboratory Oak Ridge, TN NETS Program.
1 Uses for OnTheMap Economic Planning & Time Series - Where is the labor supply located? - Which industries are growing or declining over time? Transportation.
FACTORING ax2 + bx + c Think “unfoil” Work down, Show all steps.
Projects in Computing and Information Systems A Student’s Guide
Multipath Routing for Video Delivery over Bandwidth-Limited Networks S.-H. Gary Chan Jiancong Chen Department of Computer Science Hong Kong University.
Robust Window-based Multi-node Technology- Independent Logic Minimization Jeff L.Cobb Kanupriya Gulati Sunil P. Khatri Texas Instruments, Inc. Dept. of.
Parsons Brinckerhoff Chicago, Illinois GIS Estimation of Transit Access Parameters for Mode Choice Models GIS in Transit Conference October 16-17, 2013.
Using Transit ITS Data for Service Planning
Solve Multi-step Equations
Richmond House, Liverpool (1) 26 th January 2004.
REVIEW: Arthropod ID. 1. Name the subphylum. 2. Name the subphylum. 3. Name the order.
MIMO Broadcast Scheduling with Limited Feedback Student: ( ) Director: 2008/10/2 1 Communication Signal Processing Lab.
Innovations in Multi-Modal Transit Mapping Margaret Carragher E.I.T Advisor: Dr. Kari Watkins P.E. October 16, 2013 GIS in Transit Conference, Washington.
1 Column Generation. 2 Outline trim loss problem different formulations column generation the trim loss problem master problem and subproblem in column.
PP Test Review Sections 6-1 to 6-6
EU market situation for eggs and poultry Management Committee 20 October 2011.
EU Market Situation for Eggs and Poultry Management Committee 21 June 2012.
The evening commute with cars and transit: Duality results and user equilibrium for the combined morning and evening peaks 20 th International Symposium.
COMP 482: Design and Analysis of Algorithms
Traffic assignment.
Outline Minimum Spanning Tree Maximal Flow Algorithm LP formulation 1.
Neema Nassir, Mark Hickman, and Hong Zheng Department of Civil Engineering and Engineering Mechanic The University of Arizona, Tucson, AZ INFORMS 2011.
2 |SharePoint Saturday New York City
VOORBLAD.
Name Convolutional codes Tomashevich Victor. Name- 2 - Introduction Convolutional codes map information to code bits sequentially by convolving a sequence.
Copyright © 2012, Elsevier Inc. All rights Reserved. 1 Chapter 7 Modeling Structure with Blocks.
1 RA III - Regional Training Seminar on CLIMAT&CLIMAT TEMP Reporting Buenos Aires, Argentina, 25 – 27 October 2006 Status of observing programmes in RA.
Factor P 16 8(8-5ab) 4(d² + 4) 3rs(2r – s) 15cd(1 + 2cd) 8(4a² + 3b²)
Basel-ICU-Journal Challenge18/20/ Basel-ICU-Journal Challenge8/20/2014.
1..
Routing and Congestion Problems in General Networks Presented by Jun Zou CAS 744.
© 2012 National Heart Foundation of Australia. Slide 2.
Universität Kaiserslautern Institut für Technologie und Arbeit / Institute of Technology and Work 1 Q16) Willingness to participate in a follow-up case.
Understanding Generalist Practice, 5e, Kirst-Ashman/Hull
25 seconds left…...
Januar MDMDFSSMDMDFSSS
Chapter 10: The Traditional Approach to Design
Analyzing Genes and Genomes
Systems Analysis and Design in a Changing World, Fifth Edition
©Brooks/Cole, 2001 Chapter 12 Derived Types-- Enumerated, Structure and Union.
Essential Cell Biology
Intracellular Compartments and Transport
PSSA Preparation.
Essential Cell Biology
Weekly Attendance by Class w/e 6 th September 2013.
Immunobiology: The Immune System in Health & Disease Sixth Edition
Delay Analysis and Optimality of Scheduling Policies for Multihop Wireless Networks Gagan Raj Gupta Post-Doctoral Research Associate with the Parallel.
A Logit-based Transit Assignment Using Gradient Projection with the Priority of Boarding on a Transit Schedule Network Hyunsoo Noh and Mark Hickman 2011.
Regional Traffic Simulation/Assignment Model for Evaluation of Transit Performance and Asset Utilization April 22, 2003 Athanasios Ziliaskopoulos Elaine.
Presentation transcript:

INFORMS 2011 Annual Meeting November 12-16, Charlotte, NC Modeling Transit in Regional Dynamic Travel Models: FAST-TrIPs Mark Hickman, Hyunsoo Noh, Neema Nassir, and Alireza Khani The University of Arizona Transit Research Unit atlas 1

Transit Modeling Requirements Create a versatile tool for: Transit operations Transit assignment Inter-modal assignment Capture operational dynamics for transit vehicles Capture traveler assignment and network loading in a multi-modal context Within-day assignment Day-to-day adjustments to behavior atlas 2

Transit Modeling: FAST-TrIPs Transit assignment Schedule-based Frequency-based Mix of schedule- and frequency-based Intermodal assignment (P&R, K&R) Simulation MALTA handles vehicle movements Transit vehicle hail behavior, dwell times, holding are real-time inputs to MALTA from FAST-TrIPs Passenger behavior (access, boarding, riding, alighting, and egress) handled within FAST-TrIPs Feedback of skim information for next iteration of assignment atlas Flexible Assignment and Simulation Tool for Transit and Intermodal Passengers 3

Structure of FAST-TrIPs atlas FAST-TrIPs MALTA Simulation of Vehicle Movements Transit Passenger Assignment Transit vehicle arrival Dwell time Passenger Simulation Vehicle Pax 1 Pax 3 Pax 6 … … Passenger arrival time, stop, boarding behavior Transit Skims, Operating Statistics Passenger experience Transit vehicle approach Need to stop Stop Pax 4 Pax 8 Pax 12 … … Auto skims Auto part of intermodal trips Passenger arrival from auto Activities and travel requests from OpenAMOS Google GTFS and/or transit line information Transit and intermodal trips Routes, stops, schedules Auto trips 4

Intermodal Shortest Path Problem Find the optimal path in intermodal (auto + transit) time-dependent network Intermodal Path Viability Constraints: Mode transfers are restricted to certain nodes, like bus stop and P&R. Infeasible sequences of modes like auto-bus-auto. Park-and-ride constraint : whichever park-and-ride facility is chosen for mode transfer, from auto to transit, must be used again when the immediate next mode transfer from transit back to auto takes place. atlas 5

Necessity of Tour-based Approaches Due to park-and-ride constraint in intermodal trips, the route choices for the initial and return trips influence each other. Baumann, Torday, and Dumont (2004) atlas 6

Necessity of Tour-based Approaches Due to park-and-ride constraint in intermodal trips, the route choices for both the initial and the return trips influence one another. Bousquet, Constans, and Faouzi (2009) atlas 7

Intermodal Shortest Tour Problem Specification Number of auto legs: Number of Transit legs: Number of destinations: N Number of P & R: M Number of parking actions: i Origin Number of possible tours: atlas IMST: Find the best configuration/combination of P&R facilities, and the optimal path that serves sequence of destinations, AND satisfies the P&R constraint N = 3 M = 27 Tucson = 54,081 = 214,866 = 323,028 8

Existing Intermodal Tour-based Approach: Bousquet, Constans, and Faouzi (2009) Developed and tested a two-way optimal path (for a single destination) Organized executions of the one-way shortest path algorithm Extended their approach to optimal tours with multiple destinations Performance of their approach: Number of Dijkstra one way iterations = M(M+1)(N-1) + 2M + 2 N: Number of destinations M: Number of P&Rs Bousquet, Constans, and Faouzi(2009) atlas 9

Mathematical Formulation Minimize Z = Σ d {1,…,Nd+1} Σ (i,j,t) E x ijt d (c ijt +w ijt d ) Subject to 1- Σ j,t:(i,j,t) AU x ijt d + Σ j,t:(i,j,t) MT x ijt d = Σ j,t:(j,i,t) AU x jit d +Σ j,t:(j,i,t) MT x jit d ; i V\D; d {1, …, N d +1} 2- Σ j,t:(i,j,t) TR x ijt d + Σ j,t:(i,j,t) MT x ijt d = Σ j,t:(j,i,t) TR x jit d +Σ j,t:(j,i,t) MT x jit d ; i V\D; d {1, …, N d +1} 3- Σ j,t:(o,j,t) AU x ojt 1 =1; o=origin 4- Σ j,t:(a,j,t) E x ajt d =1; d {1, …, N d +1}; a=Dest(d-1) 5- Σ i,t:(i,b,t) E x ibt d =1; d {1, …, N d +1}; b=Dest(d) 6- Σ j,t:(b,j,t) AU x bjt d+1 = Σ j,t:(j,b,t) AU x jbt d ; d {1, …, N d }; b=Dest(d) 7- Σ j,t:(b,j,t) TR x bjt d+1 = Σ j,t:(j,b,t) TR x jbt d ; d {1, …, N d }; b=Dest(d) 8- Σ d {1,…,Nd+1} Σ t:(i,j,t) MT x ijt d 1; i,j, V 9- Σ d {1,…,Nd+1} [(Σ t:(i,j,t) MT tx ijt d )(Σ a,t:(a,i,t) AU x ait d )] Σ d {1,…,Nd+1} Σ t:(j,i,t) MT tx jit d ; i,j, V 10- T o 1 =Start_time; o=origin 11- (T j d -T i d ) x ijt d = (c ijt +w ijt d )x ijt d ; (i,j,t) E; d {1, …, N d+1 } 12- (T id +w ijt d ) x ijt d = tx ijt d ; (i,j,t) E; d {1, …, N d+1 } 13- T a d+1 -T a d =Ad d ; d {1, …, N d }; a=Dest(d) 14- x ijt d {0,1}; 15- w ijt d, T i d, c ijt 0; atlas 10

Methodology atlas Network Expansion Technique Transforms the combinatorial optimization problem into a network flow problem (Shortest Path Tour Problem, SPTP) Guarantees all the path flows satisfy the P&R constraint Iterative Labeling Algorithm Solves SPTP in intermodal network Finds the optimal tour 11

Methodology- Network Expansion Origin D1D1 D2D2 P1P1 P2P2 D3D3 atlas 12

Methodology- Network Expansion Origin D1D1 D2D2 P1P1 P2P2 D3D3 D 10 D 20 P 10 P 20 D 11 D 12 D 22 D 21 P 11 P 22 D 32 D 31 D 30 atlas SPTP 13

Methodology- Shortest Path Tour Problem (SPTP) atlas Festa (2009) SPTP is finding a shortest path from a given origin node s, to a given destination node d, in a directed graph with nonnegative arc lengths, with the constraint that the optimal path P should successively pass through at least one node from given node subsets A 1, A 2, …, A N. 14

Methodology- Shortest Path Tour Problem (SPTP) Festa (2009) atlas 15

Methodology- Shortest Path Tour Problem (SPTP) Festa (2009) atlas 16

Methodology- Rivers Crossing Example Origin-Start Origin-End atlas 17

Methodology- Iterative Labeling (SPTP) Origin D 11 D 12 D 13 D 31 D 32 D 33 D 21 D 22 D 23 Activity 1 candidates Activity 2 candidates Activity 3 candidates atlas 18

Iterative Labeling : Based on Dijkstra labeling method One iteration per trip leg One layer per iteration Multi-source shortest path runs Steps: 1. Starts from origin, finds the SP tree, labels the network in layer Picks the labels of candidates nodes for 1 st destination from layer 0, and takes to layer 1. 3.Finds the SP tree from candidates nodes for 1 st destination, labels the network in layer 1. 4.Continues until all the layers are labeled. 5.Label of origin in the last layer is the shortest travel time. Methodology- Iterative Labeling (SPTP) atlas 19

One Iteration of Iterative Labeling in Intermodal Networks D 1-1 D 1-2 atlas D1D1 (a) 20

D 1-1 D 1-2 atlas D1D1 One iteration of Iterative Labeling in intermodal network (b) 21

D 1-1 D 1-2 atlas D1D1 One iteration of Iterative Labeling in intermodal network (c) 22

D 1-1 D 1-2 atlas D1D1 One iteration of Iterative Labeling in intermodal network (d) 23

D 1-1 D 1-2 atlas D1D1 One iteration of Iterative Labeling in intermodal network (e) 24

D 1-1 D 1-2 atlas D1D1 One iteration of Iterative Labeling in intermodal network (f) 25

atlas Efficiency of the Algorithm 26 D 1-1 D 1-2 D1D1 In each iteration : Number of transit shortest path runs = M+1 Number of auto shortest path runs = 1 Number of shortest path runs in Iterative labeling= N(M+2) (M is number of P&Rs and N is number of destination)

atlas Efficiency of the Algorithm 27 D 1-1 D 1-2 D1D1 In each iteration : Number of transit shortest path runs = M+1 Number of auto shortest path runs = 1 Number of shortest path runs in Iterative labeling= N(M+2) Existing approach : 2M+2+(N-1)M(M+1) (M is number of P&Rs and N is number of destination)

Real Network Application P1P1 P2P2 Origin D2D2 D1D1 Rancho Cordova, CA 447 nodes 850 links 163 bus stops 6 bus routes atlas 28

Real Network Application P1P1 P2P2 Origin D2D2 D1D1 Tour using P 1 : 71 min Tour using P 2 : 78 min Tour using auto: 62 min First leg using P 1 : 29 min First leg using P 2 : 22 min First leg using Auto: 29 min atlas Computation time: 0.6 sec 29

Conclusions atlas Optimal intermodal tour algorithm is developed. Network Expansion Technique is introduced that transforms the combinatorial optimization problem into a network flow problem. Iterative Labeling Algorithm is introduced that solves SPTP in intermodal network. Applied to real network. Improved the efficiency. 30

References atlas 1- Battista M.G., M. Lucertini and B. Simeone (1995) Path composition and multiple choice in a bimodal transportation network, In Proceedings of the 7th WCTR, Sydney, Lozano, A., and G. Storchi (2001). Shortest viable path algorithm in multimodal networks, Transportation Research Part A 35, Lozano, A., and G. Storchi (2002), Shortest viable hyperpath in multimodal networks, Transportation Research Part B 36(10), 853– Barrett C., K. Bisset, R. Jacob, G. Konjevod, and M. Marathe (2002). Classical and contemporary shortest path problems in road networks: Implementation and experimental analysis of the TRANSIMS router, In Proceedings of ESA 2002, 10th Annual European Symposium, Sept., Springer-Verlag. 5- Ziliaskopoulos, A., and W. Wardell (2000). An intermodal optimum path algorithm for multimodal networks with dynamic arc travel times and switching delays. European Journal of Operational Research 125, 486– Barrett C. L., R. Jacob, and M. V. Marathe (2000).Formal language constrained path problems. Society for Industrial and Applied Mathematics, Vol. 30, No. 3, pp. 809– Baumann, D., A. Torday, and A. G. Dumont (2004). The importance of computing intermodal round trips in multimodal guidance systems, Swiss Transport Research Conference. 8- Bousquet, A., S. Constans, and N. El Faouzi (2009). On the adaptation of a label-setting shortest path algorithm for one-way and two-way routing in multimodal urban transport networks, In Proceedings of International Network Optimization Conference, Pisa, Italy. 9- Bousquet, A. (2009). Routing strategies minimizing travel times within multimodal urban transport networks, Young Researchers Seminar, Torino, Italy, June

References atlas 10 - Pallottino, S., and M.G. Scutella (1998). Shortest path algorithms in transportation models: Classical and innovative aspects. In: Marcotte, P., Nguyen, S. (Eds.), Equilibrium and Advanced Transportation Modelling. Kluwer Academic Publishers, Dordrecht, pp. 240– Jourquine, B., and M. Beuthe (1996). Transportation policy analysis with a geographic information system: the virtual network of freight transportation in Europe. Transportation Research Part C 4(6), 359– Bertsekas, D.P. (2005). Dynamic Programming and Optimal Control. 3rd Edition, Volume I. Athena Scientific. 13- Festa, P. (2009). The shortest path tour problem : Problem definition, modeling and optimization. In Proceedings of INOC 2009, Pisa, April. 14- DynusT online user manual, Accessed July Accessed July Khani, A., S. Lee, H. Noh, M. Hickman, and N. Nassir (2011). An Intermodal Shortest and Optimal Path Algorithm Using a Transit Trip-Based Shortest Path (TBSP), 91st Annual Meeting of the Transportation Research Board, Washington D.C., Jan Tong, C. O., A. J. Richardson (1984). A Computer Model for Finding the Time-Dependent Minimum Path in a Transit System with Fixed Schedule, Journal of Advanced Transportation, 18.2, Hamdouch, Y., S. Lawphongpanich, (2006). Schedule-based transit assignment model with travel strategies and capacity constraints. Transportation Research Part B 42 (2008) 663– Noh, H., M. Hickman, and A. Khani, (2011). Hyperpaths in a Transit Schedule-based Network, 91st Annual Meeting of the Transportation Research Board, Washington D.C., Jan General Transit Feed Specification. Accessed July Accessed July GTFS Data Exchange. Accessed July

Questions?