Beyond the RF photogun Jom Luiten Seth Brussaard

Slides:



Advertisements
Similar presentations
Before aperture After aperture Faraday Cup Trigger Photodiode Laser Energy Meter Phosphor Screen Solenoids Successful Initial X-Band Photoinjector Electron.
Advertisements

7.8GHz Dielectric Loaded High Power Generation And Extraction F. Gao, M. E. Conde, W. Gai, C. Jing, R. Konecny, W. Liu, J. G. Power, T. Wong and Z. Yusof.
New Electron Beam Test Facility EBTF at Daresbury Laboratory B.L. Militsyn on behalf of the ASTeC team Accelerator Science and Technology Centre Science.
FEL Beam Dynami cs FEL Beam Dynamics T. Limberg FEL driver linac operation with very short electron bunches.
Modelling of the ALICE Injector Julian McKenzie ASTeC STFC Daresbury Laboratory IOP Particle Accelerators and Beams Group Status and Challenges of Simulation.
Photocathode 1.5 (1, 3.5) cell superconducting RF gun with electric and magnetic RF focusing Transversal normalized rms emittance (no thermal emittance)
Low Emittance RF Gun Developments for PAL-XFEL
ASTRA Injector Setup 2012 Julian McKenzie 17/02/2012.
High Current Electron Source for Cooling Jefferson Lab Internal MEIC Accelerator Design Review January 17, 2014 Riad Suleiman.
Recent Experiments at PITZ ICFA Future Light Sources Sub-Panel Mini Workshop on Start-to-End Simulations of X-RAY FELs August 18-22, 2003 at DESY-Zeuthen,
1.Institute For Research in Fundamental Science (IPM), Tehran, Iran 2.CERN, Geneva, Switzerland Mohsen Dayyani Kelisani Thermionic & RF Gun Simulations.
Max Cornacchia, Paul Emma Stanford Linear Accelerator Center Max Cornacchia, Paul Emma Stanford Linear Accelerator Center  Proposed by M. Cornacchia (Nov.
Beam Dynamics and FEL Simulations for FLASH Igor Zagorodnov and Martin Dohlus Beam Dynamics Meeting, DESY.
CLARA Gun Cavity Optimisation NVEC 05/06/2014 P. Goudket G. Burt, L. Cowie, J. McKenzie, B. Militsyn.
laser-cooled electron sources experiments / simulations
Ellipsoidal bunches by 2D laser shaping Bas van der Geer, Jom Luiten Eindhoven University of Technology DESY Zeuthen 30 November ) Experimental progress.
R&D opportunities for photoinjectors Renkai Li 10/12/2015 FACET-II Science Opportunities Workshops October, 2015 SLAC National Accelerator Laboratory.
LDRD: Magnetized Source JLEIC Meeting November 20, 2015 Riad Suleiman and Matt Poelker.
GWENAEL FUBIANI L’OASIS GROUP, LBNL 6D Space charge estimates for dense electron bunches in vacuum W.P. LEEMANS, E. ESAREY, B.A. SHADWICK, J. QIANG, G.
Velocity bunching from S-band photoinjectors Julian McKenzie 1 st July 2011 Ultra Bright Electron Sources Workshop Cockcroft Institute STFC Daresbury Laboratory,
D. Lipka, V. Vogel, DESY Hamburg, Germany, Oct Optimization cathode design with gun5 D. Lipka, V. Vogel, DESY Hamburg, Germany.
Simulation challenges for laser-cooled electron sources Bas van der Geer Marieke de Loos Pulsar Physics The Netherlands Jom Luiten Edgar.
People Xavier Stragier Marnix van der Wiel (AccTec) Willem op ‘t Root Jom Luiten Walter van Dijk Seth Brussaard Walter Knulst (TUDelft) Fred Kiewiet Eddy.
S. Bettoni, R. Corsini, A. Vivoli (CERN) CLIC drive beam injector design.
Awake electron beam requirements ParameterBaseline Phase 2Range to check Beam Energy16 MeV MeV Energy spread (  ) 0.5 %< 0.5 % ? Bunch Length (
1 Short Electron Pulses from RF Photoinjectors Massimo Ferrario INFN - LNF.
B. Marchetti R. Assmann, U. Dorda, J. Grebenyuk, Y. Nie, J. Zhu Acknowledgements: C. Behrens, R. Brinkmann, K. Flöttmann, M. Hüning,
S.M. Polozov & Ko., NRNU MEPhI
Dielectric Wakefield R&D programme at Daresbury Lab.
Linac beam dynamics Linac dynamics : C. Bruni, S. Chancé, L. Garolfi,
Beam dynamics simulation with 3D Field map for FCC RF gun
Status of the MAX IV Short Pulse Facility
Sara Thorin, MAX IV Laboratory
8-10 June Institut Henri Poincaré, Paris, France
Plans of XFELO in Future ERL Facilities
Short pulse, low charge LCLS operation
Injector Cyclotron for a Medical FFAG
A compact, soft X-ray FEL at KVI
NC Accelerator Structures
Space-Charge Effects in RF Photoinjectors
BUNCH LENGTH MEASUREMENT SYSTEM FOR 500 KV PHOTOCATHODE DC GUN AT IHEP
Tunable Electron Bunch Train Generation at Tsinghua University
UCLA Dept. of Physics and Astronomy
Experimental Overview
Magnetized Bunched Electron Beam from DC High Voltage Photogun
Few Slides from RF Deflector Developments and Applications at SLAC
MIT Compact X-ray Source
Review of Application to SASE-FELs
F. Villa Laboratori Nazionali di Frascati - LNF On behalf of Sparc_lab
Cornell Injector Performance
Beam Dynamics in a Spilt SRF-Gun
Status of the CLIC Injector studies
Production of Magnetized Electron Beam from a DC High Voltage Photogun
R. Suleiman and M. Poelker October 12, 2018
R. Suleiman and M. Poelker September 29, 2016
Superconducting High Brightness RF Photoinjector Design
Advanced Research Electron Accelerator Laboratory
Two-bunch self-seeding for narrow-bandwidth hard x-ray FELs
Selected simulations for XFEL photo injector
Physics Design on Injector I
Status of FEL Physics Research Worldwide  Claudio Pellegrini, UCLA April 23, 2002 Review of Basic FEL physical properties and definition of important.
Modified Beam Parameter Range
Longitudinal-to-transverse mapping and emittance transfer
Longitudinal-to-transverse mapping and emittance transfer
LCLS FEL Parameters Heinz-Dieter Nuhn, SLAC / SSRL April 23, 2002
Proposal for Smith-Purcell radiation experiment at SPARC_LAB
小型X線源の性能確認実験計画 高輝度・RF電子銃研究会 広島大学 高エネルギー加速器研究機構 浦川順治
Minimized emittance for high charge with multi cell superconducting guns and solenoidal focusing D. Lipka, BESSY.
Injector for the Electron Cooler
SuperKEKB required (e+ / e-)
Presentation transcript:

Beyond the RF photogun Jom Luiten Seth Brussaard Fred Kiewiet - RF photogun Benjamin Canuel Dimitri Vyuga - DC photogun Marieke de Loos - GPT Bas van der Geer - GPT Jan Botman Marnix van der Wiel Eindhoven University of Technology Netherlands

Pancake bunches & Extreme fields 1 mm high pressure SF6 50 fs UV laser pulse Laser-triggered spark gap: 1 GV/m during 1 ns (BNL) Keep bunches short during acceleration - no magnetic compression! Target bunch: Energy: 10 MeV Peak Current: 1 kA  X-ray SASE FEL Emittance: 1  mm mrad Length: 100 fs  injector for LWFA Charge: 100 pC

Outline Pancake bunches accelerated in uniform fields Space charge fields in pancake bunches Longitudinal phase space Transverse phase space GPT simulations 2 MeV DC gun DC + RF gun (2+8 MeV) 10 MeV 1 GV/m DC gun? Experimental progress 8 MeV, 2½ cell RF photogun

Space charge fields in pancake bunches bunch=100 fs, R=0.5 mm, Q=100 pC Long. field Radial field Lab frame Rest frame Ez/Es ½ 1 Er/Es 0 MeV L/R=0 -L/2 L/2 -½ ½ 1 R 2 MeV L/R=0.3 -L/2 L/2 -½ 1 R -L/2 L/2 Z -½ ½ 10 MeV L/R=1.2 R L r R

Longitudinal phase space (cf. Serafini et al., NIMA 387, 305 (1997)) + - - + - + z Ez E0 z Ez E0 E0-Es Ez z E0 E0-Es Peak current in surface charge regime: E0=1 GV/m, R=0.5 mm  I0=4 kA

Transverse phase space px Worst case: L/R=0 geometry Negligible radial motion RMS normalized emittance: x Incl. thermal emittance 0.6 n,x E0=1 GV/m R=0.5 mm Q=100 pC  0.5 ( mm mrad) 0.4 0.3 Excl. thermal emittance 0.2 0.1 0.5 1 1.5 2 Z (mm)

GPT simulations: 2 MeV DC gun (1) (Van der Geer et al., PRE 65, 046501 (2002)) Evaluate bunch at z=4.5 mm Q=100 pC, R=0.5 mm, E0=1 GV/m Highly nonlinear radial fields at iris!

GPT simulations: 2 MeV DC gun (2) 100 fs Longitudinal phase space at z=4.5 mm: FWHM bunch length 73 fs Energy spread ~ 2% Peak current 1.2 kA 2% 1.2 kA In agreement with simple model!

GPT simulations: 2 MeV DC gun (3) RMS normalized transverse emittance at z=4.5 mm: n=0.4  mm mrad nonlinear electrostatic emittance compensation! (spherical aberration cancels nonlinear space charge fields) uniform field results in agreement with simple model.

GPT simulations: DC + RF gun (1) 2 MV across 2 mm Cylindrically symmetric 2½ cell 8 MeV S-band RF booster RF Solenoid field strength 0.42-0.52 T

GPT simulations: DC + RF gun (2) Hollow cathode surface (radius of curvature 3 mm) to minimize beam divergence.

GPT simulations: DC + RF gun (3) At z = 0.2 m: n = 1.0  mm mrad zFWHM/c = 250 fs I = 400 A Particle trajectories for B=0.46 T

GPT simulations: DC + RF gun (4)

GPT simulations : DC + RF gun (5) 9.4 9.6 -200 200 400 Energy [MeV] Longitudinal phasespace At z=200 mm. Current [A] Position [fs]

Electrons accelerated by transverse E-fields in coaxial lines 10 MeV 1GV/m DC gun? Electrons accelerated by transverse E-fields in coaxial lines t0 t1 t2 t3 electrons trigger laser Requirement: pulses with picosecond rise time!

Spark-gap plasma column E < 1GV/m 3 mm 4 mm 2 MV 1 ns Near threshold / Tunneling ionization: Laser intensity > 1018 W/m2 High power Ti:Sapphire laser: 50 mJ / 50 fs = 1 TW plasma diameter = 0.3 mm 1.5 MV in less than 1 picosecond

GPT simulations: 12 MeV pulsed DC gun (1) 2 MV, 1 ns pulse Laser trigger Accelerator structure Electron bunch Spark-gaps 25 mm EM field calculations: CST Microwave Studio

GPT simulations: 12 MeV pulsed DC gun (2) Emittance [pi mm mrad] z [mm] Current [A] z [mm] I = 0.7 kA; n=0.6  mm mrad @ 12 MeV

Experimental status: Pulsed DC acceleration Brookhaven National lab: 1 MV (5 MV?) pulses 1 GV/m @ 1 ns Under construction @ TU/e: 2.5 MV pulses 1 ns

Experimental status: RF Photogun TE10 mode TEM mode 10 MW 2.998 GHz 2½ cell 8 MeV Doorknob (DESY) Movable short

Superfish: f0=2998.0 MHz Q=6500 Reflection < 1% 0-mode: Intermediate mode: -mode: Measurement: Superfish 1.0 Measurement -10 0.8 Reflection [dB] |E/Emax| 0.6 -20 0.4 -30 0.2 -40 0.0 2.992 2.994 2.996 2.998 3.000 20 40 60 80 100 120 140 160 Frequency [GHz] Position [mm]

Experimental setup RF photogun

First results RF photogun: Beam on phosphorescent screen: Energy : 5..6 MeV Charge : 100 .. 500 pC UV laser power : 50 J 1 mm

Summary DC/RF hybrid RF photogun Operational multi stage DC? n Single stage DC DC + RF Multi stage DC energy 2 MeV 10 MeV 12 MeV current 1.2 kA 0.4 kA 0.7 kA n 0.4  mm mrad 1.0  mm mrad 0.6  mm mrad DC/RF hybrid RF photogun Operational multi stage DC?