Section 1: Types of Waves

Slides:



Advertisements
Similar presentations
Table of Contents Chapter 14
Advertisements

Chapter 15 WAVES.
Chapter 15: Waves Sections: 15.1, 15.2, & 15.3.
Chapter 11 Waves and Wave properties. What is a wave? A wave is a disturbance that carries energy through matter or space.
Waves.
Welcome to 306!   Today is a new marking period – a new start!   DO NOW: Please write three goals you have for yourself in Integrated Science for.
Chapter 20 Preview Section 1 The Nature of Waves
Objectives Chapter 14 Recognize that waves transfer energy.
matter energy media crests
Harrison County High School Waves. A wave is a disturbance that carries energy through matter or space (356) We generally discuss two types of waves:
Ch. 20 Wave Notes Cool Wave Effect Cool Wave Effect.
WAVES.
Table of Contents Chapter 14
Characteristics of Waves
Vibrations and Waves Chapter 11.
WAVE Basics Chapters 15.
What Is a Wave? What does a wave carry?
The Nature of Waves What is a wave? A wave is a repeating disturbance or movement that transfers energy through matter or space Waves transfer energy.
WAVES. COS 9.0, 9.1,9.2 WHAT YOU’LL LEARN Recognize that waves transfer energy. Distinguish between mechanical waves and electromagnetic waves. Explain.
Waves Chapter 14.
Chapter 11 Waves. Chapter 11.1 Notes Wave is a disturbance that transmits energy through matter and space. Medium is the matter through which a wave travels.
1 Waves Chapter Wave at the Shoe 3 Types of Waves A wave is a disturbance that carries energy through matter or space. The medium is the matter.
Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu To View the presentation as a slideshow with effects select “View”
Welcome to 306!   Today is a new marking period – a new start!   DO NOW: Please write three goals you have for yourself in Integrated Science for.
Chapter 20 Waves.
1/14/Day 1 Introduction to Waves Homework ◦Missing Work  MP end Next Fri.
Light and Sound energy. Wave Definition A wave – is something that carries energy though matter or space. Waves transfer energy Energy spreads out as.
WavesSection 2 Bellringer In the diagram, A is the distance from a point on one wave to an identical point on the next wave. What might this distance be.
Chapter 17 Mechanical Waves Mechanical Waves.
WavesSection 2 Wave Properties 〉 What are some ways to measure and compare waves? 〉 Amplitude and wavelength are measurements of distance. Period and frequency.
Chapter 22 Section 1 The Nature of Waves Question of the Day What do you think of when you hear the word WAVE? Write a brief description on your paper.
Chapter 22 The Energy of Waves Preview Section 1 The Nature of WavesThe Nature of Waves Section 2 Properties of WavesProperties of Waves Section 3 Wave.
Let’s Play Review Jeopardy!. Type of Waves Wave Properties Wave Interactions Vocab. $100 $200 $300 $400 $500 $400 $500.
WavesSection 2 Section 2: Characteristics of Waves Preview Key Ideas Bellringer Wave Properties Wave Speed Math Skills.
WavesSection 1 Section 1: Types of Waves Preview Key Ideas Bellringer What Is a Wave? Vibrations and Waves Transverse and Longitudinal Waves Surface Waves.
Preview Key Ideas Bellringer What Is a Wave? Vibrations and Waves Transverse and Longitudinal Waves Surface Waves SECTION 1: TYPES OF WAVES.
Copyright © by Holt, Rinehart and Winston. All rights reserved. Table of Contents Section 1 Types of Waves Section 2 Characteristics of Waves Section.
WavesSection 1 What Is a Wave? 〉 What does a wave carry? 〉 A wave is a disturbance that carries energy through matter or space.
WAVES Essential Questions:
Section 3: Wave Interactions
Chapter 14 and 15.
Section 3: Wave Interactions
Section 2: Characteristics of Waves
Section 1: Types of Waves
Wave Motion.
The Energy of Waves.
WAVES.
Chapter 17: Mechanical Waves & Sound
Reflection, Diffraction, and Refraction
Section 1: Types of Waves
Chapter 20 The Energy of Waves.
How to Use This Presentation
CHAPTER 15 WAVES.
Ch 20 The Energy of Waves The Nature of Waves.
Ch 15 Waves.
Wave Interactions.
Energy may ______________________________as a wave travels.
Chapter 11 vocabulary Medium: matter through which a wave travels
WAVES Essential Questions:
Chapter 11 – Waves Section 1 – Types of Waves
The Nature of Waves. The Nature of Waves What is a wave?
Waves Chapter 15.
Section 3: Wave Interactions
Section 2: Characteristics of Waves
Waves.
Waves.
Section 3: Wave Interactions
Energy may ______________________________as a wave travels.
WAVES.
Section 3: Wave Interactions
Presentation transcript:

Section 1: Types of Waves Preview Key Ideas Bellringer What Is a Wave? Vibrations and Waves Transverse and Longitudinal Waves Surface Waves

Key Ideas What does a wave carry? How are waves generated? What is the difference between a transverse wave and a longitudinal wave? How do the particles in ocean waves move?

Bellringer Imagine throwing a rock into a pond or lake. Describe the effect that the rock has on the surface of the water. When surfing, a person moves just ahead of a wave. Where does the energy come from to move the surfer through the water? What happens to a string on a guitar or other stringed instrument when it is plucked?

What Is a Wave? What does a wave carry? A wave is a disturbance that carries energy through matter or space.

What Is a Wave?, continued

What Is a Wave?, continued Most waves travel through a medium. medium: a physical environment in which phenomena occur mechanical wave: a wave that requires a medium through which to travel examples: sound waves, water waves

What Is a Wave?, continued Electromagnetic waves do not require a medium. electromagnetic wave: a wave that consists of oscillating electric and magnetic fields, which radiate outward at the speed of light examples: visible light waves, radio waves

Visual Concept: Electromagnetic Waves

What Is a Wave?, continued Waves transfer energy. Tsunamis carry enough energy to cause damage to coastal towns. The energy of normal ocean waves breaks up rocks into pieces to form sandy beaches.

Visual Concept: Tsunami

What Is a Wave?, continued Energy may spread out as a wave travels. When sound waves travel in air, the waves spread out in spheres. As the waves travel outward, the spherical wave fronts get bigger, so the energy spreads out over a larger volume.

Vibrations and Waves How are waves generated? Most waves are caused by vibrating objects. The sound waves produced by a singer are caused by vibrating vocal cords. Electromagnetic waves may be caused by vibrating charged particles. For mechanical waves, the particles in the medium through which the wave passes vibrate, too.

Vibrations and Waves, continued The mechanical energy of a vibrating mass-spring system changes form. This type of vibration is called simple harmonic motion. NOTE: Animation is not working as it should, picture should appear after first bullet point.

Vibrations and Waves, continued A wave can pass through a series of vibrating objects. The disturbance travels down the row as energy is transferred from one mass to another. Wave particles move like masses on springs. NOTE: Animation is not working as it should, picture should appear after first bullet point.

Transverse and Longitudinal Waves What is the difference between a transverse wave a longitudinal wave? A transverse wave is a wave in which the wave motion is perpendicular to the particle motion. A longitudinal wave is a wave in which the wave motion is parallel to the particle motion.

Transverse and Longitudinal Waves, continued Transverse waves have perpendicular motion. transverse wave: a wave in which the particles of the medium move perpendicularly to the direction the wave is traveling Longitudinal waves have parallel motion. longitudinal wave: a wave in which the particles of the medium vibrate parallel to the direction of wave motion

Visual Concept: Transverse Wave

Visual Concept: Longitudinal Wave

Transverse and Longitudinal Waves, continued Waves have crests and troughs or compressions and rarefactions. crest: the highest point of a wave trough: the lowest point of a wave compressions: the crowded areas of a longitudinal wave rarefactions: the stretched-out areas of a longitudinal wave

Surface Waves How do the particles in ocean waves move? The particles in a surface wave move both perpendicularly and parallel to the direction in which the wave travels. surface waves: waves that occur at the boundary between two different mediums, such as water and air

Visual Concept: Formation and Movement of Ocean Waves

Section 2: Characteristics of Waves Preview Key Ideas Bellringer Wave Properties Wave Speed Math Skills The Doppler Effect

Key Ideas What are some ways to measure and compare waves? How can you calculate the speed of a wave? Why does the pitch of an ambulance siren change as the ambulance rushes past you?

Bellringer In the diagram, A is the distance from a point on one wave to an identical point on the next wave. What might this distance be called? In the diagram, B is the amplitude of a wave. What do you think this is a measure of? Twenty waves pass by a point in a certain amount of time. Would this be a measure of a wave’s speed or frequency?

Wave Properties What are some ways to measure and compare waves? Amplitude and wavelength are measurements of distance. Period and frequency are measurements based on time.

Wave Properties, continued Amplitude measures the amount of particle vibration. amplitude: the maximum distance that the particles of a wave’s medium vibrate from their rest position for a transverse wave, measured from the rest position to the crest or the trough expressed in the SI unit meters (m)

Wave Properties, continued Wavelength is the distance between two equivalent parts of a wave. wavelength: the distance from any point on a wave to an identical point on the next wave for a transverse wave, measured from crest to crest or trough to trough represented by the symbol l expressed in the SI unit meters (m)

Wave Properties, continued Amplitude and wavelength tell you about energy. larger amplitude = more energy shorter wavelength = more energy

Wave Properties, continued The period is a measurement of the time it takes for a wave to pass a given point. period: in physics, the time that it takes a complete cycle or wave oscillation to occur represented by the symbol T expressed in the SI unit seconds (s) in the diagram, T = 2 s

Wave Properties, continued Frequency is a measurement of the vibration rate. frequency: the number of cycles or vibrations per unit of time; also the number of waves produced in a given amount of time represented by the symbol f expressed in the SI unit hertz (Hz), which equals 1/s in the diagram, f = 0.5 Hz

Visual Concept: Characteristics of a Wave

Wave Properties, continued The frequency and period of a wave are related. The frequency is the inverse of the period.

Wave Speed How can you calculate the speed of a wave? The speed of a wave is equal to wavelength divided by period, or to frequency multiplied by wavelength.

Wave Speed, continued Wave speed equals wavelength divided by period. speed = distance/time Wave speed equals frequency times wavelength. wave speed = frequency  wavelength, or v = f  l

Visual Concept: Equation for the Speed of a Wave

Math Skills Wave Speed The string of a piano that produces the note middle C vibrates with a frequency of 262 Hz. If the sound waves produced by this string have a wavelength in air of 1.30 m, what is the speed of the sound waves? List the given and unknown values. Given: frequency, f = 262 Hz wavelength,  = 1.30 m Unknown: wave speed, v = ? m/s

Math Skills, continued Write the equation for wave speed. v = f   Insert the known values into the equation, and solve. v = 262 Hz  1.30 m v = 341 m/s

Wave Speed, continued The speed of a wave depends on the medium. In general, wave speed is greatest in solids and least in gases. In a given medium, the speed of waves is constant. Kinetic theory explains differences in wave speed. Light has a finite speed. the speed of light (c) = 3.00  108 m/s for electromagnetic waves, c = f  l

The Doppler Effect Why does the pitch of an ambulance siren change as the ambulance rushes past you? Motion between the source of waves and the observer creates a change in observed frequency.

The Doppler Effect, continued Pitch is determined by the frequency of sound waves. The pitch of a sound (how high or low it is) is determined by the frequency at which sound waves strike the eardrum in your ear. A higher-pitched sound is caused by sound waves of higher frequency.

The Doppler Effect, continued Frequency changes when the source of waves is moving. Doppler effect: an observed change in the frequency of a wave when the source or observer is moving The Doppler effect occurs for many types of waves, including sound waves and light waves.

Visual Concept: Doppler Effect and Sound

Section 3: Wave Interactions Preview Key Ideas Bellringer Reflection, Diffraction, and Refraction Interference Standing Waves

Key Ideas How do waves behave when they hit a boundary, when they pass around an edge or opening, and when they pass from one medium to another? What happens when two waves are in the same location? How are standing waves formed?

Bellringer Why do we see rainbows on rainy days? a. When you throw a ball against a wall, what happens to the ball? b. When light waves hit a barrier, what happens to the light waves? 3. When two objects meet, share the same space, and overlap with each other, what is it called?

Reflection, Diffraction, and Refraction How do waves behave when they hit a boundary, when they pass around an edge or opening, and when they pass from one medium to another? When a wave meets a surface or a boundary, the wave bounces back. When a wave passes the edge of an object or passes through an opening, the wave bends. A wave also bends when it passes from one medium to another at an angle.

Reflection, Diffraction, and Refraction, continued Reflection occurs when a wave meets a boundary. reflection: the bouncing back of a ray of light, sound, or heat when the ray hits a surface that it does not go through Examples: The reflection of light waves in a lake can create a mirror image of a landscape. Water waves are reflected when they hit the side of a boat.

Visual Concept: Reflection

Reflection, Diffraction, and Refraction , continued Diffraction is the bending of waves around an edge. diffraction: a change in the direction of a wave when the wave finds an obstacle or an edge, such as an opening Examples: Water waves diffract around a block in a tank of water. Sound waves passing through a door diffract.

Visual Concept: Diffraction

Reflection, Diffraction, and Refraction , continued Waves can also bend by refraction. refraction: the bending of a wavefront as the wavefront passes between two substances in which the speed of the wave differs All waves are refracted when they pass from one medium to another at an angle.

Visual Concept: Refraction

Interference What happens when two waves are in the same location? When several waves are in the same location, they combine to produce a single, new wave that is different from the original waves. This interaction is called interference. interference: the combination of two or more waves that results in a single wave

Interference, continued Constructive interference increases amplitude. constructive interference: a superposition of two or more waves that produces an intensity equal to the sum of the intensities of the individual waves Destructive interference decreases amplitude. destructive interference: a superposition of two or more waves that produce an intensity equal to the difference of the intensities of the individual waves

Interference, continued

Interference, continued Interference of light waves creates colorful displays. When two waves of slightly different frequencies interfere with each other, they produce beats.

Standing Waves How are standing waves formed? A standing wave causes the medium to vibrate in a stationary pattern that resembles a loop or a series of loops. standing wave: a pattern of vibration that simulates a wave that is standing still

Standing Waves, continued Standing waves have nodes and antinodes. Each loop of a standing wave is separated from the next loop by points that have no vibration, called nodes. Midway between the nodes lie points of maximum vibration, called antinodes.

Visual Concept: Standing Wave