CHAPTER 11: PHASE TRANSFORMATIONS

Slides:



Advertisements
Similar presentations
Chapter 11: Phase Transformations
Advertisements

ISSUES TO ADDRESS... Transforming one phase into another takes time. How does the rate of transformation depend on time and T? 1 How can we slow down the.
Phase transformations Fe 3 C (cementite) L  (austenite)  +L+L  + Fe 3 C  L+Fe 3 C  C o, wt% C 1148°C T(°C)
ISSUES TO ADDRESS... • Transforming one phase into another takes time.
Chapter 10: Phase transformations in metals   Simple diffusion-dependent No change in either the number or composition of phases present, e.g., solidification.
Non Ferrous alloys MSE 528. Mg alloys for automotive.
Chapter 10: Phase Transformations – adding Time to Phase Diagrams
PHASE DIAGRAMS Phase B Phase A • When we combine two elements...
ISSUES TO ADDRESS... When we combine two elements... what equilibrium state do we get? In particular, if we specify... --a composition (e.g., wt%Cu - wt%Ni),
Chapter 7- ISSUES TO ADDRESS... Why are dislocations observed primarily in metals and alloys? How are strength and dislocation motion related? How do we.
Chapter ISSUES TO ADDRESS... When we combine two elements... what equilibrium state do we get? In particular, if we specify... --a composition (e.g.,
Chapter 9: Phase Diagrams
Chapter 10: Phase Transformations
Chapter 1- _____ ________. Required text: Materials Science and Engineering: An Introduction W.D. Callister, Jr., 6th edition, John Wiley and Sons, Inc.
1 ISSUES TO ADDRESS... When we combine two elements... what equilibrium state do we get? In particular, if we specify... --a composition (e.g., wt% Cu.
Chapter 10- ISSUES TO ADDRESS... Transforming one phase into another takes time. How does the rate of transformation depend on time and T? 1 How can we.
Isothermal Transformation Diagrams
D AY 15: H ARDENABILITY Hardenability CCT Curves.
CHAPTER 11: PHASE TRANSFORMATIONS
CHAPTER 11: PHASE TRANSFORMATIONS
PRECIPITATION HARDENING
Materials Engineering – Day 13 More About Steel
ISSUES TO ADDRESS... Transforming one phase into another takes time. How does the rate of transformation depend on time and T? 1 How can we slow down the.
Phase Transformations in Metals
ENGR-45_Lec-18_DisLoc-Strength-2.ppt 1 Bruce Mayer, PE Engineering-45: Materials of Engineering Bruce Mayer, PE Registered Electrical.
CHAPTER 9: PHASE DIAGRAMS
Chapter Lecture 11 Phase Diagrams, Solidification, Phase transformations ME 330 Engineering Materials Solidification Solidification microstructures.
Chapter ISSUES TO ADDRESS... When we combine two elements... what is the resulting equilibrium state? In particular, if we specify the composition.
Chapter 10: Phase Transformations
Chapter ISSUES TO ADDRESS... When we combine two elements... what equilibrium state do we get? In particular, if we specify... --a composition (e.g.,
Chapter ISSUES TO ADDRESS... When we combine two __________... what is the resulting _____________state? In particular, if we specify the.
Chapter MSE 101: Introduction to Materials Science & Engineering Course Objective... To introduce students to a wide range of modern materials engineering.
CHAPTER 10: PHASE TRANSFORMATIONS
Chapter 10: Phase Transformations
Chapter 11: Phase Transformations
Chapter 10: Phase Transformations
Metallic Materials-Phase Diagrams
PHASE DIAGRAMS ISSUES TO ADDRESS... • When we combine two elements...
Hardness • Resistance to permanently indenting the surface.
Yield strength: the elongation of a mat'l
IT Phsae transformation of metals
Phase Transformations
Chapter 10: Phase Transformations
EX 1: Pb-Sn Eutectic System
Chapter 9: Phase Diagrams
Chapter 11: Phase Diagrams
Introduction to Materials Science and Engineering
Isothermal Transformation (or TTT) Diagrams
CHAPTER 9: Definitions A. Solid Solution
Chapter 11: Metal Alloys Heat Treatment
IRON-CARBON (Fe-C) PHASE DIAGRAM
PHASE TRANSFORMATIONS
Introduction to Materials Science and Engineering
CHAPTER 10: PHASE TRANSFORMATIONS
Continuous Cooling Transformation Diagrams
CHAPTER 1: MATERIALS SCIENCE & ENGINEERING
HYPOEUTECTIC & HYPEREUTECTIC
CHAPTER 9: PHASE DIAGRAMS
EX: Pb-Sn EUTECTIC SYSTEM (1)
CHAPTER 7: DISLOCATIONS AND STRENGTHENING
NON-EQUIL TRANSFORMATION PRODUCTS: Fe-C
Chapter 10: Phase Diagrams
CHAPTER 7: DISLOCATIONS AND STRENGTHENING
Cast Iron Ferrous alloys with > 2.1 wt% C
EX: Pb-Sn EUTECTIC SYSTEM (1)
Hypoeutectoid Steel T(°C) d L +L g (austenite) Fe3C (cementite) a
HYPOEUTECTIC & HYPEREUTECTIC
Chapter 10: Phase Diagrams
CHAPTER 9: PHASE DIAGRAMS
Presentation transcript:

CHAPTER 11: PHASE TRANSFORMATIONS ISSUES TO ADDRESS... • Transforming one phase into another takes time. • How does the rate of transformation depend on time and T? • How can we slow down the transformation so that we can engineering non-equilibrium structures? • Are the mechanical properties of non-equilibrium structures better? 1

FRACTION OF TRANSFORMATION • Fraction transformed depends on time. Adapted from Fig. 10.1, Callister 6e. • Transformation rate depends on T. Adapted from Fig. 10.2, Callister 6e. (Fig. 10.2 adapted from B.F. Decker and D. Harker, "Recrystallization in Rolled Copper", Trans AIME, 188, 1950, p. 888.) • r often small: equil not possible! 2

TRANSFORMATIONS & UNDERCOOLING Adapted from Fig. 9.21,Callister 6e. (Fig. 9.21 adapted from Binary Alloy Phase Diagrams, 2nd ed., Vol. 1, T.B. Massalski (Ed.-in-Chief), ASM International, Materials Park, OH, 1990.) 3 3

EUTECTOID TRANSFORMATION RATE ~ DT • Growth of pearlite from austenite: Adapted from Fig. 9.13, Callister 6e. • Reaction rate increases with DT. Adapted from Fig. 10.3, Callister 6e. 4

NUCLEATION AND GROWTH • Reaction rate is a result of nucleation and growth of crystals. Adapted from Fig. 10.1, Callister 6e. • Examples: 5

ISOTHERMAL TRANSFORMATION DIAGRAMS • Fe-C system, Co = 0.77wt%C • Transformation at T = 675C. Adapted from Fig. 10.4,Callister 6e. (Fig. 10.4 adapted from H. Boyer (Ed.) Atlas of Isothermal Transformation and Cooling Transformation Diagrams, American Society for Metals, 1977, p. 369.) 6

EX: COOLING HISTORY Fe-C SYSTEM • Eutectoid composition, Co = 0.77wt%C • Begin at T > 727C • Rapidly cool to 625C and hold isothermally. Adapted from Fig. 10.5,Callister 6e. (Fig. 10.5 adapted from H. Boyer (Ed.) Atlas of Isothermal Transformation and Cooling Transformation Diagrams, American Society for Metals, 1997, p. 28.) 7

PEARLITE MORPHOLOGY Two cases: • Ttransf just below TE --Larger T: diffusion is faster --Pearlite is coarser. • Ttransf well below TE --Smaller T: diffusion is slower --Pearlite is finer. Adapted from Fig. 10.6 (a) and (b),Callister 6e. (Fig. 10.6 from R.M. Ralls et al., An Introduction to Materials Science and Engineering, p. 361, John Wiley and Sons, Inc., New York, 1976.) 8

NON-EQUIL TRANSFORMATION PRODUCTS: Fe-C • Bainite: --a lathes (strips) with long rods of Fe3C --diffusion controlled. • Isothermal Transf. Diagram (Adapted from Fig. 10.8, Callister, 6e. (Fig. 10.8 from Metals Handbook, 8th ed., Vol. 8, Metallography, Structures, and Phase Diagrams, American Society for Metals, Materials Park, OH, 1973.) Adapted from Fig. 10.9,Callister 6e. (Fig. 10.9 adapted from H. Boyer (Ed.) Atlas of Isothermal Transformation and Cooling Transformation Diagrams, American Society for Metals, 1997, p. 28.) 9

OTHER PRODUCTS: Fe-C SYSTEM (1) • Spheroidite: --a crystals with spherical Fe3C --diffusion dependent. --heat bainite or pearlite for long times --reduces interfacial area (driving force) • Isothermal Transf. Diagram (Adapted from Fig. 10.10, Callister, 6e. (Fig. 10.10 copyright United States Steel Corporation, 1971.) Adapted from Fig. 10.9,Callister 6e. (Fig. 10.9 adapted from H. Boyer (Ed.) Atlas of Isothermal Transformation and Cooling Transformation Diagrams, American Society for Metals, 1997, p. 28.) 10

OTHER PRODUCTS: Fe-C SYSTEM (2) • Martensite: --g(FCC) to Martensite (BCT) (Adapted from Fig. 10.11, Callister, 6e. • Isothermal Transf. Diagram (Adapted from Fig. 10.12, Callister, 6e. (Fig. 10.12 courtesy United States Steel Corporation.) Adapted from Fig. 10.13, Callister 6e. • g to M transformation.. -- is rapid! -- % transf. depends on T only. 11

COOLING EX: Fe-C SYSTEM (1) Adapted from Fig. 10.15, Callister 6e. 12

COOLING EX: Fe-C SYSTEM (2) Adapted from Fig. 10.15, Callister 6e. 13

COOLING EX: Fe-C SYSTEM (3) Adapted from Fig. 10.15, Callister 6e. 14

MECHANICAL PROP: Fe-C SYSTEM (1) Adapted from Fig. 9.27,Callister 6e. (Fig. 9.27 courtesy Republic Steel Corporation.) Adapted from Fig. 9.30,Callister 6e. (Fig. 9.30 copyright 1971 by United States Steel Corporation.) Adapted from Fig. 10.20, Callister 6e. (Fig. 10.20 based on data from Metals Handbook: Heat Treating, Vol. 4, 9th ed., V. Masseria (Managing Ed.), American Society for Metals, 1981, p. 9.) 15

MECHANICAL PROP: Fe-C SYSTEM (2) Adapted from Fig. 10.21, Callister 6e. (Fig. 10.21 based on data from Metals Handbook: Heat Treating, Vol. 4, 9th ed., V. Masseria (Managing Ed.), American Society for Metals, 1981, pp. 9 and 17.) 16

MECHANICAL PROP: Fe-C SYSTEM (3) • Fine Pearlite vs Martensite: Adapted from Fig. 10.23, Callister 6e. (Fig. 10.23 adapted from Edgar C. Bain, Functions of the Alloying Elements in Steel, American Society for Metals, 1939, p. 36; and R.A. Grange, C.R. Hribal, and L.F. Porter, Metall. Trans. A, Vol. 8A, p. 1776.) • Hardness: fine pearlite << martensite. 17

TEMPERING MARTENSITE • reduces brittleness of martensite, • reduces internal stress caused by quenching. Adapted from Fig. 10.25, Callister 6e. (Fig. 10.25 adapted from Fig. furnished courtesy of Republic Steel Corporation.) Adapted from Fig. 10.24, Callister 6e. (Fig. 10.24 copyright by United States Steel Corporation, 1971.) 18

SUMMARY: PROCESSING OPTIONS Adapted from Fig. 10.27, Callister 6e. 19

PRECIPITATION HARDENING • Particles impede dislocations. • Ex: Al-Cu system • Procedure: --Pt A: solution heat treat (get a solid solution) --Pt B: quench to room temp. --Pt C: reheat to nucleate small q crystals within a crystals. • Other precipitation systems: • Cu-Be • Cu-Sn • Mg-Al Adapted from Fig. 11.22, Callister 6e. (Fig. 11.22 adapted from J.L. Murray, International Metals Review 30, p.5, 1985.) Adapted from Fig. 11.20, Callister 6e. 20

PRECIPITATE EFFECT ON TS, %EL • 2014 Al Alloy: • TS peaks with precipitation time. • Increasing T accelerates process. • %EL reaches minimum with precipitation time. Adapted from Fig. 11.25 (a) and (b), Callister 6e. (Fig. 11.25 adapted from Metals Handbook: Properties and Selection: Nonferrous Alloys and Pure Metals, Vol. 2, 9th ed., H. Baker (Managing Ed.), American Society for Metals, 1979. p. 41.) 21

SIMULATION: DISLOCATION MOTION PEAK AGED MATERIAL --avg. particle size = 64b --closer spaced particles efficiently stop dislocations. Simulation courtesy of Volker Mohles, Institut für Materialphysik der Universitåt, Münster, Germany (http://www. uni-munster.de/physik /MP/mohles/). Used with permission. Click on image to begin simulation 22

SIMULATION: DISLOCATION MOTION OVERAGED MATERIAL --avg. particle size = 361b --more widely spaced particles not as effective. Simulation courtesy of Volker Mohles, Institut für Materialphysik der Universitåt, Münster, Germany (http://www. uni-munster.de/physik /MP/mohles/). Used with permission. Click on image to begin simulation 23

STRENGTHENING STRATEGY 3: PRECIPITATION STRENGTHENING • Hard precipitates are difficult to shear. Ex: Ceramics in metals (SiC in Iron or Aluminum). • Result: 24

SIMULATION: PRECIPITATION STRENGTHENING • View onto slip plane of Nimonic PE16 • Precipitate volume fraction: 10% • Average precipitate size: 64 b (b = 1 atomic slip distance) Simulation courtesy of Volker Mohles, Institut für Materialphysik der Universitåt, Münster, Germany (http://www.uni-munster.de/physik /MP/mohles/). Used with permission. 25

APPLICATION: PRECIPITATION STRENGTHENING • Internal wing structure on Boeing 767 Adapted from Fig. 11.0, Callister 5e. (Fig. 11.0 is courtesy of G.H. Narayanan and A.G. Miller, Boeing Commercial Airplane Company.) • Aluminum is strengthened with precipitates formed by alloying. 1.5mm Adapted from Fig. 11.24, Callister 6e. (Fig. 11.24 is courtesy of G.H. Narayanan and A.G. Miller, Boeing Commercial Airplane Company.) 26

ANNOUNCEMENTS Reading: Core Problems: Self-help Problems: