Shufang Su • U. of Arizona

Slides:



Advertisements
Similar presentations
Ze-Peng Liu, Yue-Liang Wu and Yu-Feng Zhou Kavli Institute for Theoretical Physics China, Institute of Theoretical Physics, Chinese Academy of Sciences.
Advertisements

SuperWIMP Dark Matter Jonathan Feng University of California, Irvine UC Berkeley 11 October 2004.
Gravitino Dark Matter & R-Parity Violation M. Lola MEXT-CT (work with P. Osland and A. Raklev) Prospects for the detection of Dark Matter Spain,
WIMPs and superWIMPs Jonathan Feng UC Irvine MIT Particle Theory Seminar 17 March 2003.
Joe Sato (Saitama University ) Collaborators Satoru Kaneko,Takashi Shimomura, Masato Yamanaka,Oscar Vives Physical review D 78, (2008) arXiv:1002.????
WIMPless Miracle and Relics in Hidden Sectors Hai-Bo Yu University of California, Irvine Talk given at KITPC 09/16/2008 with Jonathan L. Feng and Huitzu.
Constraints on the very early universe from thermal WIMP Dark Matter Mitsuru Kakizaki (Bonn Univ.) Mitsuru Kakizaki (Bonn Univ.) July 27, Karlsruhe.
27 Oct 08Feng 1 WIMPS AND THEIR RELATIONS Jonathan Feng University of California, Irvine 27 October 2008 MIT Nuclear and Particle Physics Colloquium.
Dark Matter: A Mini Review Jin Min Yang Hong Kong (杨 金 民)(杨 金 民) Institute of Theoretical Physics Academia Sinica, Beijing.
SuperWIMP Dark Matter Jonathan Feng University of California, Irvine University of Washington 4 March 2005.
WIMPs and superWIMPs Jonathan Feng UC Irvine SUGRA20 18 March 2003.
23 September 05Feng 1 COSMOLOGY AT COLLIDERS Jonathan Feng University of California, Irvine 23 September 2005 SoCal Strings Seminar Graphic: N. Graf.
SuperWIMP Cosmology and Collider Phenomenology Jonathan Feng University of California, Irvine SUSY04, Tsukuba 21 June 2004.
2 June 05Feng 1 DARK MATTERS Jonathan Feng University of California, Irvine 2 June 2005 UCSC Colloquium Graphic: N. Graf.
4 Mar 08Feng 1 DARK MATTERS CaJAGWR Caltech-JPL 4 March 2008 Jonathan Feng UC Irvine.
WIMPS AND THEIR RELATIONS Jonathan Feng University of California, Irvine CIFAR, Mont Tremblant 7 March 2009 Work with Jose Ruiz Cembranos 1, Manoj Kaplinghat.
DARK MATTERS Jonathan Feng University of California, Irvine Physics Department Colloquium University of Chicago 2 December 2004.
Sombrero Galaxy (M104, 46 M light years). Long-lived charged massive particle and its effect on cosmology Physics Department, Lancaster University Physics.
The LC and the Cosmos: Connections in Supersymmetry Jonathan Feng UC Irvine Arlington LC Workshop January 2003.
20 June 07Feng 1 MICROPHYSICS AND THE DARK UNIVERSE Jonathan Feng University of California, Irvine CAP Congress 20 June 2007.
The LC and the Cosmos: Connections in Supersymmetry Jonathan Feng UC Irvine American Linear Collider Physics Group Seminar 20 February 2003.
SuperWIMP Dark Matter Jonathan Feng UC Irvine FNAL Theoretical Astrophysics Seminar 17 May 2004.
Mia Schelke, Ph.D. Student The University of Stockholm, Sweden Cosmo 03.
8 Oct 07Feng 1 THE SEARCH FOR DARK MATTER Jonathan Feng University of California, Irvine 8 October 2007 CSULB Colloquium Graphic: N. Graf.
20 June 06Feng 1 DARK MATTER AND SUPERGRAVITY Jonathan Feng University of California, Irvine 20 June 2006 Strings 2006, Beijing.
The Dark Universe Progress, Problems, and Prospects Jonathan Feng University of California, Irvine APS April Meeting, Denver 1 May 2004.
5 Feb 07Feng 1 ILC AND NEW DEVELOPMENTS IN COSMOLOGY Jonathan Feng University of California, Irvine BILCW07 5 February 2007 Graphic: N. Graf.
Feng 1 LHC PROSPECTS FOR COSMOLOGY Jonathan Feng University of California, Irvine COSMO 09, CERN 7 September 2009.
9 Oct 08Feng 1 DARK MATTERS 9 October 2008 Caltech Physics Colloquium Jonathan Feng UC Irvine.
REHEATING TEMPERATURE IN GAUGE MEDIATION MODELS AND COMPRESSED PARTICLE SPECTRUM Olechowski, SP, Turzynski, Wells (ABOUT RECONCILING SUPERSYMMETRIC DARK.
12 Apr 06Feng 1 RECENT PROGRESS IN SUSY DARK MATTER Jonathan Feng University of California, Irvine 12 April 2006 Texas A&M Mitchell Symposium Graphic:
19 Mar 099 Oct 08Feng 1 DARK MATTER CANDIDATES AND SIGNALS 19 March 2009 UCSC Physics Colloquium Jonathan Feng UC Irvine.
Quintessino model and neutralino annihilation to diffuse gamma rays X.J. Bi (IHEP)
SUSY Dark Matter Collider – direct – indirect search bridge. Sabine Kraml Laboratoire de Physique Subatomique et de Cosmologie Grenoble, France ● 43. Rencontres.
Nobuchika Okada (KEK) Brane World Cosmologies IX Workshop on High Energy Physics Phenomenology 03 January – 14 January, 2006 Institute of Physics, Sachivalaya.
Masato Yamanaka (Saitama University) collaborators Shigeki Matsumoto Joe Sato Masato Senami arXiv: [hep-ph]Phys.Lett.B647: and Relic abundance.
DARK MATTER CANDIDATES Cody Carr, Minh Nguyen December 9 th, 2014.
Right-handed sneutrino as cold dark matter of the universe Takehiko Asaka (EPFL  Niigata University) Refs: with Ishiwata and Moroi Phys.Rev.D73:061301,2006.
SUSY in the sky: supersymmetric dark matter David G. Cerdeño Institute for Particle Physics Phenomenology Based on works with S.Baek, K.Y.Choi, C.Hugonie,
Dark Matter Detection in Space Jonathan Feng UC Irvine SpacePart 03, Washington, DC 10 December 2003.
Cosmology and Collider Physics - Focus on Neutralino Dark Matter - Masahiro Yamaguchi (Tohoku U.) 7 th ACFA LC Taipei Nov. 12, 2004.
Detecting metastable staus and gravitinos at the ILC Hans-Ulrich Martyn RWTH Aachen & DESY.
STAU CLIC Ilkay Turk Cakir Turkish Atomic Energy Authority with co-authors O. Cakir, J. Ellis, Z. Kirca with the contributions from A. De Roeck,
Stable SuperWeakly Interacting Massive Particles (SuperWIMPs) Fumihiro Takayama (Cornell/DESY) ~ Late decaying particles and the implications for astrophysical.
Phys. Lett. B646 (2007) 34, (hep-ph/ ) Non-perturbative effect on thermal relic abundance of dark matter Masato Senami (University of Tokyo, ICRR)
A Solution to the Li Problem by the Long Lived Stau
Lecture II: Dark Matter Candidates and WIMPs
Dark Matter: A Mini Review
Phenomenology of Twin Higgs Model
Shufang Su • U. of Arizona
Search for New Physics beyond the SM
MSSM4G: MOTIVATIONS AND ALLOWED REGIONS
PARTICLE DARK MATTER CANDIDATES
Shufang Su • U. of Arizona
Phenomenology of Twin Higgs Model
GOLDILOCKS COSMOLOGY Work with Ze’ev Surujon, Hai-Bo Yu (1205.soon)
Supersymmetric Dark Matter
Shufang Su • U. of Arizona
Shufang Su • U. of Arizona
Shufang Su • U. of Arizona
Testing the Standard Model and Beyond
Phenomenology of Twin Higgs Model
Shufang Su • U. of Arizona
SUSY WIMP and Collider Signatures
Dark matter annihilation and the Milky Way diffuse gamma
Collider signatures of gravitino dark matter with a sneutrino NLSP
Gravitons and Dark Matter in Universal Extra Dimensions
Sombrero Galaxy (M104, 46 M light years)
How Heavy can Neutralino Dark Matter be?
(Tokyo university, ICRR)
Presentation transcript:

Shufang Su • U. of Arizona superWIMP Dark matter the darkest dark matter Coupling / 1/mpl (very suppressed) no signal for direct/indirect DM searches can not be produced at colliders Shufang Su • U. of Arizona not very exciting naturally obtain  solve BBN 7Li anomaly could be tested at colliders Work collaborated with J. Feng, F. Takayama

Outline WIMP and superWIMP dark matter Gravitino LSP as superWIMP - WIMP and superWIMP dark matter Gravitino LSP as superWIMP Constraints Late time energy injection and BBN NLSP  gravitino +SM particle slepton, sneutrino, neutralino - approach I: fix SWIMP=0.23 - approach II: SWIMP=(mSWIMP/mNLSP) thNLSP Collider phenomenology Slepton trapping Conclusion S. Su SWIMP

Dark Matter (DM) DM h2=0.112 § 0.009 Non-baryonic Stable Neutral Cold Can not be any of the known particles  microscopic identity of DM ? WIMP and superWIMP appear in particle physics models motivated independently by attempts to solve EWSB relic density are determined by Mpl and Mweak naturally around the observed value no need to introduce and adjust new energy scale S. Su SWIMP

Universe cools: n=nEQe-m/T WIMP - Thermal equilibrium  $ ff Boltzmann equation expansion   ff ff   Universe cools: n=nEQe-m/T WIMP =n hvi v.s. H WIMP » h anv i-1 mWIMP» Mweak an » weak2 Mweak-2 naturally around the observed value e.g. neutralino LSP Freeze out, n/s » const early time   H n ¼ neq late time   H (n/s)today » (n/s)decoupling at freeze-out ¼ H TF » m/25 Approximately, relic / 1/hvi S. Su SWIMP

superWIMP WIMP  superWIMP + SM particles 104 s  t  108 s SM - WIMP  superWIMP + SM particles FRT hep-ph/0302215, 0306024 104 s  t  108 s SWIMP WIMP SM superWIMP e.g. Gravitino LSP LKK graviton WIMP neutral charged 106 S. Su SWIMP

Gravitino Gravitino: superpartner of graviton - Gravitino: superpartner of graviton Obtain mass when SUSY is spontaneously broken mG » F/mpl Stable when it is LSP - candidate of Dark Matter ~ mG ¿ mSUSY » keV warm Dark Matter ~ mG » mSUSY » GeV – TeV cold Dark Matter ~ S. Su SWIMP

Gravitino: warm dark matter - mG ¿ mSUSY (GMSB) ~ ~  h2 » (mG/keV) (100/g*) mG » keV : warm Dark Matter mG  keV : problematic ! gravitino dilution necessary  stringent bounds on reheating temp. ~ Moroi, Murayama and Yamaguchi, PLB303, 289 (1993) S. Su SWIMP

Gravitino cold dark matter - mG » mSUSY » GeV – TeV (supergravity) ~ G ~ , l LSP G ~ , l LSP superWIMP DM thermalLSP  v-1  (weak coupling)-2 thermalLSP  v-1  (gravitational coupling)-2 WIMP G  LSP + SM BBN constraints: TRH  105 – 108 GeV Conflict with thermal leptogenesis: TRH  3 £ 109 GeV ~ v too small thG too big overclose the Universe unless TRH  1010 GeV ~ Kawasaki, Kohri and Moroi, asrtro-ph/0402490, astro-ph/0408426 Bolz, Brandenburg and Buchmuller,NPB 606, 518 (2001) Buchmuller, Bari, Plumacher, NPB665, 445 (2003)

Superpartner of graviton superWIMP : an example - change light element abundance predicted by BBN Strong constraints ! SUSY case WIMP  superWIMP + SM particles NLSP: slepton/sneutrino neutralino/chargino Gravitino LSP Superpartner of graviton WIMP superWIMP SM particle » 1 mpl2 Decay lifetime  planck mass S. Su SWIMP

superWIMP and SUSY WIMP - neutralino/chargino NLSP slepton/sneutrino NLSP BBN EM had Brhad  O(0.01) Brhad  O(10-3) S. Su SWIMP

Constraints ~ NLSP  G + SM particles  Dark matter density G · 0.23 - ~ NLSP  G + SM particles  Dark matter density G · 0.23 ~ Approach I Approach II SWIMP close universe SWIMP maybe insiginificant nNLSP  SWIMP/mSWIMP1/mSWIMP  1/mSUSY thNLSP  v-1  m2SUSY  nNLSP  mSUSY NLSP: slepton,sneutrino neutralino : excluded NLSP: slepton, sneutrino, neutralino fix G = 0.23 ~ G = mG/mNLSP thNLSP ~ S. Su SWIMP

Constraints (cont’)  CMB photon energy distribution -  CMB photon energy distribution - early decay:  = 0 thermalized through e  e, eX  eX , e  e - late decay:   0 statistical but not thermodynamical equilibrium || · 9 £ 10-5 Fixsen et. al., astro-ph/9605054 Hagiwara et. al., PDG S. Su SWIMP

Constraints (cont’) ?  Big bang nucleosynthesis /10-10 = 6.1 0.4 Fields, Sarkar, PDG (2002) S. Su SWIMP

BBN constraints on EM/had injection - Decay lifetime NLSP EM/had energy release EM,had=EM,had BrEM,had YNLSP Cyburt, Ellis, Fields and Olive, PRD 67, 103521 (2003) EM EM (GeV) » mNLSP-mG ~ Kawasaki, Kohri and Moroi, astro-ph/0402490 had EM S. Su SWIMP

Decay lifetime Decay lifetime (sec) ~ ~ l  G + l,  ! G +  - Decay lifetime (sec) l  G + l,  ! G +  ~ B  G + /Z/h ~ S. Su SWIMP

EM.had and BrEM, had EM, had » mNLSP-mG EM/had branching ratio BrEM, had ~ neutralino slepton Sneutrino EM mode BrEM 1 had Brhad O(1) O(10-2 - 10-6) S. Su SWIMP

YNLSP: approach I approach I: fix G = 0.23 ~ slepton and sneutrino - approach I: fix G = 0.23 ~ slepton and sneutrino 200 GeV ·  m · 400 » 1500 GeV mG ¸ 200 GeV ~  m · 80 » 300 GeV apply CMB and BBN constraints on (NLSP, EM/had )  viable parameter space NLSP, EM,had=EM,had BEM,had YNLSP S. Su SWIMP

YNLSP: approach II approach II: G = (mG/mNLSP) thNLSP ~ - approach II: G = (mG/mNLSP) thNLSP ~ Approximately right-handed slepton sneutrino (left-handed slepton) neutralino “bulk” -“focus point/co-annihilation” S. Su SWIMP

Approach II: slepton and sneutrino - G = (mG/mNLSP) thNLSP ~ S. Su SWIMP

Approach II: bino - G = (mG/mNLSP) thNLSP ~ S. Su SWIMP

superWIMP in mSUGRA Usual WIMP allowed region superWIMP allowed region - BBN EM constraints only Stau NLSP Ellis et. al., hep-ph/0312262 Usual WIMP allowed region superWIMP allowed region S. Su SWIMP

Distinguish from stau NLSP and gravitino LSP in GMSB Collider Phenomenology - SWIMP Dark Matter no signals in direct / indirect dark matter searches SUSY NLSP: rich collider phenomenology NLSP in SWIMP: long lifetime  stable inside the detector Charged slepton highly ionizing track, almost background free Distinguish from stau NLSP and gravitino LSP in GMSB GMSB: gravitino m » keV warm not cold DM collider searches: other sparticle (mass) (GMSB) ¿ (SWIMP): distinguish experimentally S. Su SWIMP

Sneutrino and neutralino NLSP - sneutrino and neutralino NLSP missing energy signal: energetic jets/leptons + missing energy  Is the lightest SM superpartner sneutrino or neutralino? angular distribution of events (LC) vs.  Does it decay into gravitino or not? sneutrino case: most likely gravitino is LSP neutralino case: most likely neutralino LSP direct/indirect dark matter search positive detection  disfavor gravitino LSP precision determination of SUSY parameter: th, ~ ~ ,  0.23  favor gravitino LSP ~ S. Su SWIMP

SM particle energy/angular distribution …  mG Decay life time SM particle energy/angular distribution …  mG  mpl … ~ SM NLSP Probes gravity in a particle physics experiments! BBN, CMB in the lab Precise test of supergravity: gravitino is a graviton partner ~ G SM NLSP SM NLSP ~ G ~ G SM NLSP SM NLSP ~ G ~ G How to trap slepton? Hamaguchi, kuno, Nakaya, Nojiri, hep-ph/0409248 Feng and Smith, hep-ph/0409278 S. Su SWIMP

Slepton trapping Feng and Smith, hep-ph/0409278 - Slepton could live for a year, so can be trapped then moved to a quiet environment to observe decays LHC: 106 slepton/yr possible, but most are fast. Catch 100/yr in 1 kton water LC: tune beam energy to produce slow sleptons, can catch 1000/yr in 1 kton water S. Su SWIMP

Conclusions SuperWIMP is possible candidate for dark matter - SuperWIMP is possible candidate for dark matter SUSY models SWIMP: gravitino LSP WIMP: slepton/sneutrino/neutralino Constraints from BBN: EM injection and hadronic injection Favored mass region Approach I: fix G=0.23 Approach II: G = (mG/mNLSP) thNLSP Rich collider phenomenology (no direct/indirect DM signal) charged slepton: highly ionizing track sneutrino/neutralino: missing energy slepton trapping WIMP  superWIMP + SM particle ~ ~ ~ S. Su SWIMP

Frequently asked question

Something about  lepton -   G +, ~   mesons, induce hadronic cascade meson decay before interact with BG hadrons longer than typical meson (, K) lifetime (E/m)£ 10-8 s S. Su SWIMP