Two color FEL experiment

Slides:



Advertisements
Similar presentations
Schemes for generation of attosecond pulses in X-ray FELs E.L. Saldin, E.A. Schneidmiller, M.V. Yurkov The potential for the development of XFEL beyond.
Advertisements

Design and Experimental Considerations for Multi-stage Laser Driven Particle Accelerator at 1μm Driving Wavelength Y.Y. Lin( 林元堯), A.C. Chiang (蔣安忠), Y.C.
LC-ABD P.J. Phillips, W.A. Gillespie (University of Dundee) S. P. Jamison (ASTeC, Daresbury Laboratory) A.M. Macleod (University of Abertay) Collaborators.
05/03/2004 Measurement of Bunch Length Using Spectral Analysis of Incoherent Fluctuations Vadim Sajaev Advanced Photon Source Argonne National Laboratory.
Coherent Radiation from High-Current Electron Beams of a Linear Accelerator and Its Applications S. Okuda ISIR, Osaka Univ Research Institute.
E. Schneidmiller and M. Yurkov (SASE & MCP) C. Behrens, W. Decking, H. Delsim, T. Limberg, R. Kammering (rf & LOLA) N. Guerassimova and R. Treusch (PGM.
FEL Considerations for CLARA: a UK Test Facility for Future Light Sources David Dunning On behalf of the CLARA team 8 th March 2012.
2004 CLEO/IQEC, San Francisco, May Optical properties of the output of a high-gain, self-amplified free- electron laser Yuelin Li Advanced Photon.
The BESSY Soft X-Ray SASE FEL (Free Electron Laser)
A. Zholents, July 28, 2004 Timing Controls Using Enhanced SASE Technique *) A. Zholents or *) towards absolute synchronization between “visible” pump and.
UCLA The X-ray Free-electron Laser: Exploring Matter at the angstrom- femtosecond Space and Time Scales C. Pellegrini UCLA/SLAC 2C. Pellegrini, August.
John Arthur LCLS Diagnostics and Commissioning September 22, 2004 Summary of Related Topics from the Miniworkshop on.
Compton Linac for Polarized Positrons V. Yakimenko, I. Pogorelsky, M. Polyanskiy, M. Fedurin BNL CERN, October 15, 2009.
New Electron Beam Test Facility EBTF at Daresbury Laboratory B.L. Militsyn on behalf of the ASTeC team Accelerator Science and Technology Centre Science.
Two-photon absorption standards in the nm excitation range: establishing a correction curve for accurate cross section calibration Nikolay S.
07/27/2004XFEL 2004 Measurement of Incoherent Radiation Fluctuations and Bunch Profile Recovery Vadim Sajaev Advanced Photon Source Argonne National Laboratory.
W.S. Graves1 Seeding for Fully Coherent Beams William S. Graves MIT-Bates Presented at MIT x-ray laser user program review July 1, 2003.
Jörn Bödewadt | Seeding at FLASH | | Page 1 Click to edit Master subtitle style Jörn Bödewadt Recent Results of Seeding at FLASH Supported by.
+ SwissFEL Introduction to Free Electron Lasers Bolko Beutner, Sven Reiche
A. Doyuran, L. DiMauro, W. Graves, R. Heese, E. D. Johnson, S. Krinsky, H. Loos, J.B. Murphy, G. Rakowsky, J. Rose, T. Shaftan, B. Sheehy, Y. Shen, J.
Yen-Yu Chang, Li-Chung Ha, Yen-Mu Chen Chih-Hao Pai Investigator Jypyng Wang, Szu-yuan Chen, Jiunn-Yuan Lin Contributing Students Institute of Atomic and.
R&D Towards X-ray Free Electron Laser Li Hua Yu Brookhaven National Laboratory 1/23/2004.
Free Electron Lasers (I)
S. Spampinati, J.Wu, T.Raubenhaimer Future light source March, 2012 Simulations for the HXRSS experiment with the 40 pC beam.
Transverse Profiling of an Intense FEL X-Ray Beam Using a Probe Electron Beam Patrick Krejcik SLAC National Accelerator Laboratory.
Institute of Atomic and Molecular Sciences, Academia Sinica, Taiwan National Taiwan University, Taiwan National Central University, Taiwan National Chung.
Free-Electron Laser at the TESLA Test Facility More than 50 institutes from 12 countries are involved in the TESLA Project The TESLA Collaboration: Three.
Max Cornacchia, SLAC LCLS Project Overview BESAC, Feb , 2001 LCLS Project Overview What is the LCLS ? Transition from 3 rd generation light sources.
External Seeding Approaches: S2E studies for LCLS-II Gregg Penn, LBNL CBP Erik Hemsing, SLAC August 7, 2014.
Basic Energy Sciences Advisory Committee MeetingLCLS February 26, 2001 J. Hastings Brookhaven National Laboratory LCLS Scientific Program X-Ray Laser Physics:
External Seeding Approaches for Next Generation Free Electron Lasers
The Next Generation Light Source Test Facility at Daresbury Jim Clarke ASTeC, STFC Daresbury Laboratory Ultra Bright Electron Sources Workshop, Daresbury,
UCLA Claudio Pellegrini UCLA Department of Physics and Astronomy X-ray Free-electron Lasers Ultra-fast Dynamic Imaging of Matter II Ischia, Italy, 4/30-5/3/
Lessons Learned From the First Operation of the LCLS for Users Presented by Josef Frisch For the LCLS March 14, 2010.
J. Corlett. June 16, 2006 A Future Light Source for LBNL Facility Vision and R&D plan John Corlett ALS Scientific Advisory Committee Meeting June 16, 2006.
What did we learn from TTF1 FEL? P. Castro (DESY).
1 NGLS Outline and Needs in Superconducting RF Materials Development John Corlett SRFMW, July 16, 2012 Office of Science.
Operation and Upgrades of the LCLS J. Frisch 1,R. Akre 1, J. Arthur 1, R. Bionta 2, C. Bostedt 1, J. Bozek 1, A. Brachmann 1, P. Bucksbaum 1, R. Coffee.
Free Electron Laser Studies
Status of the SPARC laser and “dazzler” experiments
Previous presentation
Beam dynamics for an X-band LINAC driving a 1 keV FEL
Planned Oslo work in the XbFEL collaboration
Introduction to Synchrotron Radiation
Timing and synchronization at SPARC
Tunable Electron Bunch Train Generation at Tsinghua University
TERASPARC Characterization of the THz source
Gu Qiang For the project team
Enrica Chiadroni LNF-INFN 20 aprile 2010
Musings For Future Challenge
Conveners: L.Serafini,F. Villa
UCLA/ATF chicane compression experiments
Review of Application to SASE-FELs
Free Electron Lasers (FEL’s)
F. Villa Laboratori Nazionali di Frascati - LNF On behalf of Sparc_lab
Not a Talk, just a contribution to the discussions.
ERL working modes Georg Hoffstaetter, Professor Cornell University / CLASSE / SRF group & ERL effort High Current mode High Coherence mode High Buch charge.
Soft X-Ray pulse length measurement
UCLA/ATF chicane compression experiments
Two-bunch self-seeding for narrow-bandwidth hard x-ray FELs
Jim Clarke ASTeC Daresbury Laboratory March 2006
Brief Introduction to (VUV/)Soft X-ray FELs
Design of an ECHO-seeded FEL at nm wavelength
SASE FEL PULSE DURATION ANALYSIS FROM SPECTRAL CORRELATION FUNCTION
TIME RESOLVED SPECTROSCOPY [T.R.S.]:
Status of FEL Physics Research Worldwide  Claudio Pellegrini, UCLA April 23, 2002 Review of Basic FEL physical properties and definition of important.
Transverse coherence and polarization measurement of 131 nm coherent femtosecond pulses from a seeded FEL J. Schwenke, E. Mansten, F. Lindau, N. Cutic,
LCLS FEL Parameters Heinz-Dieter Nuhn, SLAC / SSRL April 23, 2002
Introduction to Free Electron Lasers Zhirong Huang
Proposal for Smith-Purcell radiation experiment at SPARC_LAB
Presentation transcript:

Two color FEL experiment F. Villa on behalf of Sparc_lab

Outline Scientific case Linac operation FEL results Conclusions F. Villa

Scientific motivation Two color FELs are greatly discussed in literature for several applications (i.e. pump-probe) They are limited by the natural bandwidth of the FEL amplifier Two-bunches electron beam with given time and energy separation Tailoring the time and frequency separation of the FEL pulses Linac settings: laser comb technique in the velocity bunching Explore FEL dynamics Sub-ps FEL pulse at two different frequencies Two color FEL radiation at two different times One color FEL radiation at two different times F. Villa

Electron comb generation seed CPA 0.09 ps rms 3rd HG ~50 uJ 266 nm 4.27 ps αBBO crystal e-tot ~160 pC F. Villa

Measure Linac working points Simulation

FEL diagnostics Resolution 1.2 nm Spectral window: 200-840 nm Chamber VI Filter Wheel Chamber Filters Resolution 1.2 nm Spectral window: 200-840 nm Undulator VI Fiber IR spectrometer Movable Mirror Joulemeter Energy range 1pJ – 1 nJ Grenouille Time-bandwidth product <10 Spectral resolution 0.7 nm Time window 1 ps F. Villa

FEL spectra -85.6 Quasi single spike regime -88.6 -87.6

FEL time modulations spectrum time (autocorr.) 110 fs FEL radiation Energy (MeV) E. spread (%) Length (fs) Charge (pC) 1st bunch 92.52 (.03) 0.174 (.005) 147 (2) 82.2 (1.6) 2nd bunch 93.59 (.03) 0.317 (.005) 283 (3) 77.9 (1.6) Whole beam 93.04 (.03) 0.631 (.003) 305 (4) 160 (3) spectrum time (autocorr.) 110 fs FEL radiation Electron Δλ (nm) Time duration rms (fs) Time separation (fs) 18 (4) 77 (5) 110 (26) Energy separation (MeV) 1.07 (0.05) Time separation (ps) 0.42 (0.03)

FEL tunability ΔE (MeV) 1.01 (0.03) Δλ (nm) 20.7 (1.7) ΔEth (MeV) 1.07 (0.09) ΔE (MeV) 1.14 (0.06) Δλ (nm) 26 (3) ΔEth (MeV) 1.35 (0.14) F. Villa

SASE spectrum instability -88.6 F. Villa

Conclusions Two pulse electron beam FEL light Next developments: tunable in time and energy separation capable of FEL emission Shorter or equal to the FEL coherence length (quasi-single spike regime) FEL light characterization of FEL radiation spectrum production of train of short FEL pulses Next developments: FEL Seeding for better spectrum stability New laser technique for laser comb generation F. Villa