ADDRESSING Before you can send a message, you must know the destination address. It is extremely important to understand that each computer has several.

Slides:



Advertisements
Similar presentations
TCP/IP Protocol Suite 1 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 2 The OSI Model and the TCP/IP.
Advertisements

2.1 Chapter 2 Network Models Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Chapter 2 Network Models.
2.1 Chapter 2 Network Models Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Chapter 2 Network Models.
2.1 Background Information Network Models LAYERED TASKS We use the concept of layers in our daily life. As an example, let us consider two friends.
The OSI Model and the TCP/IP Protocol Suite
TCP/IP Protocol Suite 1 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 2 The OSI Model and the TCP/IP.
Chapter 2. Network Models
Chapter 2 Network Models
Lecturer: Tamanna Haque Nipa
The OSI Model and the TCP/IP Protocol Suite
McGraw-Hill©The McGraw-Hill Companies, Inc., 2000 Computer Communication and Networks Muhammad Waseem Iqbal Lecture # 07.
Computer Networks Lecture 1 & 2 Introduction and Layer Model Approach Lahore Leads University.
McGraw-Hill©The McGraw-Hill Companies, Inc., 2000 Chapter 2 The OSI Model and TCP/IP Protocol Suite.
NDSL, Chang Gung University, 2.1 Chapter 2 Network Models 長庚大學資訊工程學系 陳仁暉 副教授 Tel: (03) Ext: 5990
Lecture 2 TCP/IP Protocol Suite Reference: TCP/IP Protocol Suite, 4 th Edition (chapter 2) 1.
The OSI Model and the TCP/IP Protocol Suite
McGraw-Hill©The McGraw-Hill Companies, Inc., 2004 Chapter 2 Network Models.
THE OSI MODEL AND THE TCP/IP PROTOCOL SUITE CS 1202 Lectur3 part2.
Data Comm. & Networks Instructor: Ibrahim Tariq Lecture 3.
TCP/IP Protocol.
Computer Communication & Networks Lecture # 02 Nadeem Majeed Choudhary
The OSI Model and the TCP/IP Protocol Suite Outline: 1.Protocol Layers 2.OSI Model 3.TCP/IP Model 4.Addressing 1.
2.1 Chapter 2 Network Models Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
NET 221D: NETWORKS FUNDAMENTALS Lecture 1: Introduction to Protocols and Layers Networks and Communication Department 1.
McGraw-Hill©The McGraw-Hill Companies, Inc., 2004 Chapter 2 Network Models.
1 Kyung Hee University Chapter 2 Network Models. 2 Kyung Hee University 2.1 LAYERED TASKS We use the concept of layers in our daily life. As an example,
Prof. Hosny Ibrahim.  Text book (TX1): Data and Computer Communications By: William Stalling, 11 th Edition 2011  Text book (TX2): Data Communications.
Chapter 2. Network Models
BZUPAGES.COM 2.1 Chapter 2 Network Models Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Network Models.
CSCD 218 : DATA COMMUNICATIONS AND NETWORKING 1
Lecture # 02 Network Models Course Instructor: Engr. Sana Ziafat.
Chapter 2. Network Models
2.1 Chapter 2 Network Models Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Chapter 9 Introduction To Data-Link Layer Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
2.1 Chapter 2 Network Models – cont. Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Network Models. The OSI Model Open Systems Interconnection (OSI). Developed by the International Organization for Standardization (ISO). Model for understanding.
Lecture # 02 Network Models Course Instructor: Engr. Sana Ziafat.
TCP/IP Protocol Suite 1 Chapter 1 Objectives Upon completion you will be able to: Introduction Understand how the Internet came into being Understand the.
Chapter 9 Introduction To Data-Link Layer
Chapter 9 Introduction To Data-Link Layer 9.# 1
Behrouz A. Forouzan TCP/IP Protocol Suite, 3rd Ed.
Network Models.
Chapter 2 Network Models
Chapter 2 Network Models.
Chapter 2 Network Models
Lecture 3 By Miss Irum Matloob.
The OSI Model and the TCP/IP Protocol Suite
Net 431: ADVANCED COMPUTER NETWORKS
The Open System Interconnection (OSI) Model & Network Protocols.
Introduction to Protocol and Layer
Net431:advanced net services
Chapter 2 Network Models.
The OSI Model and the TCP/IP Protocol Suite
Chapter 2 Network Models.
The OSI Model and the TCP/IP Protocol Suite
Chapter 2 Network Models.
The OSI Model and the TCP/IP Protocol Suite
2.1 Chapter 2 Network Models Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Chapter 2 Network Models
Data Communication Networks
CSE 313 Data Communication
Chapter 2 Network Models.
Lec 6 ADDRESSING Computer Networks Al-Mustansiryah University
Chapter 2 Network Models
The OSI Model and the TCP/IP Protocol Suite
Data-Link Layer The Internet is a combination of networks glued together by connecting devices (routers or switches) If a packet is to travel from a host.
2.1 Chapter 2 Network Models Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Presentation transcript:

ADDRESSING Before you can send a message, you must know the destination address. It is extremely important to understand that each computer has several addresses, each used by a different layer. One address is used by the data link layer, another by the network layer, and still another by the application layer

ADDRESSING Four levels of addresses are used in an internet employing the TCP/IP protocols: physical address, logical address, port address, and application-specific address. Each address is related to a one layer in the TCP/IP architecture TCP/IP Protocol Suite

Topics Discussed in the Section Physical Addresses Logical Addresses Port Addresses Application-Specific Addresses TCP/IP Protocol Suite

Addresses in the TCP/IP protocol suite

Example 1 In Figure a node with physical address 10 sends a frame to a node with physical address 87. The two nodes are connected by a link (a LAN). At the data link layer, this frame contains physical (link) addresses in the header. These are the only addresses needed. The rest of the header contains other information needed at this level. As the figure shows, the computer with physical address 10 is the sender, and the computer with physical address 87 is the receiver. The data link layer at the sender receives data from an upper layer. It encapsulates the data in a frame. The frame is propagated through the LAN. Each station with a physical address other than 87 drops the frame because the destination address in the frame does not match its own physical address. The intended destination computer, however, finds a match between the destination address in the frame and its own physical address. TCP/IP Protocol Suite

physical addresses TCP/IP Protocol Suite

A 6-byte (12 hexadecimal digits) physical address Example 4 In previous slides you learn, most local area networks use a 48-bit (6-byte) physical address written as 12 hexadecimal digits; every byte (2 hexadecimal digits) is separated by a colon, as shown below: 07:01:02:01:2C:4B A 6-byte (12 hexadecimal digits) physical address TCP/IP Protocol Suite

Example 5 Figure 2.17 shows a part of an internet with two routers connecting three LANs. Each device (computer or router) has a pair of addresses (logical and physical) for each connection. In this case, each computer is connected to only one link and therefore has only one pair of addresses. Each router, however, is connected to three networks. So each router has three pairs of addresses, one for each connection. Although it may be obvious that each router must have a separate physical address for each connection, it may not be obvious why it needs a logical address for each connection. We discuss these issues in Chapters 11 and 12 when we discuss routing. The computer with logical address A and physical address 10 needs to send a packet to the computer with logical address P and physical address 95. We use letters to show the logical addresses and numbers for physical addresses, but note that both are actually numbers, as we will see in later chapters. TCP/IP Protocol Suite

Figure Example logical addresses TCP/IP Protocol Suite

Note The physical addresses will change from hop to hop, but the logical addresses remain the same. TCP/IP Protocol Suite

Example 6 Figure (port numbers example) shows two computers communicating via the Internet. The sending computer is running three processes at this time with port addresses a, b, and c. The receiving computer is running two processes at this time with port addresses j and k. Process a in the sending computer needs to communicate with process j in the receiving computer. Note that although both computers are using the same application, FTP, for example, the port addresses are different because one is a client program and the other is a server program, as we will see in Chapter 17. TCP/IP Protocol Suite

Example 2.6: port numbers TCP/IP Protocol Suite

Note The physical addresses change from hop to hop, but the logical and port addresses usually remain the same. TCP/IP Protocol Suite

A 16-bit port address represented as one single number Example 7 As we will see in future chapters, a port address is a 16-bit address represented by one decimal number as shown. 753 A 16-bit port address represented as one single number TCP/IP Protocol Suite