Chapter 11: Phase Diagrams

Slides:



Advertisements
Similar presentations
Phase Diagrams Continued
Advertisements

Microstructures in Eutectic Systems: I
Phase Equilibria: Solubility Limit Sucrose/Water Phase Diagram Pure Sugar Temperature (°C) Co=Composition (wt% sugar) L (liquid solution.
Chapter 9 Sections:9.2, 9.3, 9.4, 9.5.
Chapter 9: Phase Diagrams
Phase Diagrams Chapter 10.
PHASE DIAGRAMS Phase B Phase A • When we combine two elements...
ISSUES TO ADDRESS... When we combine two elements... what equilibrium state do we get? In particular, if we specify... --a composition (e.g., wt%Cu - wt%Ni),
How to calculate the total amount of  phase (both eutectic and primary)? Fraction of  phase determined by application of the lever rule across the entire.
Chapter 9 Phase Diagrams.
Chapter ISSUES TO ADDRESS... When we combine two elements... what equilibrium state do we get? In particular, if we specify... --a composition (e.g.,
Chapter 9: Phase Diagrams
ENGR-45_Lec-22_PhaseDia-2.ppt 1 Bruce Mayer, PE Engineering-45: Materials of Engineering Bruce Mayer, PE Licensed Electrical &
1 ISSUES TO ADDRESS... When we combine two elements... what equilibrium state do we get? In particular, if we specify... --a composition (e.g., wt% Cu.
Ex: Phase Diagram: Water-Sugar System THE SOLUBILITY LIMIT.
Chapter ISSUES TO ADDRESS... When we mix two elements... what equilibrium state do we get? In particular, if we specify... --a composition (e.g.,
Phase Diagrams And Microstructure
CHAPTER 10: PHASE DIAGRAMS
The Structure and Dynamics of Solids
CHAPTER 9: PHASE DIAGRAMS
Phase Diagrams Binary Eutectoid Systems Iron-Iron-Carbide Phase Diagram Steels and Cast Iron 1.
Fe-Carbon Phase Diagram
Phase Diagram Fe3C.
ME 330 Engineering Materials
Chapter ISSUES TO ADDRESS... When we combine two elements... what is the resulting equilibrium state? In particular, if we specify the composition.
Chapter 10: Phase Transformations
Phase Equilibrium Engr 2110 – Chapter 9 Dr. R. R. Lindeke.
Chapter ISSUES TO ADDRESS... When we combine two elements... what equilibrium state do we get? In particular, if we specify... --a composition (e.g.,
Chapter ISSUES TO ADDRESS... When we combine two __________... what is the resulting _____________state? In particular, if we specify the.
Solid State Reactions Phase Diagrams and Mixing
CHAPTER 10: PHASE TRANSFORMATIONS
Metallic Materials-Phase Diagrams
Part 6 Chemistry Engineering Department 23/10/2013
PHASE DIAGRAMS ISSUES TO ADDRESS... • When we combine two elements...
Materials Engineering
The Iron-Iron Carbide Phase Diagram
The Iron–Iron Carbide (Fe–Fe3C) Phase Diagram
Material Science and Metallurgy
Chapter 10: Phase Transformations
Phase Diagrams–Equilibrium Microstructural Development
Chapter 9: Phase Diagrams
EX 1: Pb-Sn Eutectic System
Chapter 9: Phase Diagrams
Introduction to Materials Science and Engineering
Visit for more Learning Resources
CHAPTER 9: Definitions A. Solid Solution
IRON-CARBON (Fe-C) PHASE DIAGRAM
Phase Diagrams.
AHMEDABAD INSTITUTE OF TECHNOLOGY
Phase Diagrams Binary Eutectoid Systems Iron-Iron-Carbide Phase Diagram Steels and Cast Iron Weeks
Introduction to Materials Science and Engineering
Fully Miscible Solution
HYPOEUTECTIC & HYPEREUTECTIC
CHAPTER 9: PHASE DIAGRAMS
EX: Pb-Sn EUTECTIC SYSTEM (1)
Phase Diagrams.
Chapter 10: Phase Diagrams
2/16/2019 9:54 PM Chapter 9 Phase Diagrams Dr. Mohammad Abuhaiba, PE.
Single solid phase binary alloy -1
EX: Pb-Sn EUTECTIC SYSTEM (1)
CHAPTER 8 Phase Diagrams 1.
CHAPTER 8 Phase Diagrams 1.
CHAPTER 8 Phase Diagrams 1.
Working with Phase Diagrams
HYPOEUTECTIC & HYPEREUTECTIC
Chapter 10: Phase Diagrams
IE-114 Materials Science and General Chemistry Lecture-10
Phase Diagram.
CHAPTER 9: PHASE DIAGRAMS
Presentation transcript:

Chapter 11: Phase Diagrams ISSUES TO ADDRESS... • When we combine two elements... what is the resulting equilibrium state? • In particular, if we specify... -- the composition (e.g., wt% Cu - wt% Ni), and -- the temperature (T ) then... How many phases form? What is the composition of each phase? What is the amount of each phase? Phase B Phase A Nickel atom Copper atom

Phase Equilibria: Solubility Limit • Solution – solid, liquid, or gas solutions, single phase • Mixture – more than one phase • Solubility Limit: Maximum concentration for which only a single phase solution exists. Sugar/Water Phase Diagram Sugar Temperature (°C) 20 40 60 80 100 C = Composition (wt% sugar) L (liquid solution i.e., syrup) Solubility Limit (liquid) + S (solid sugar) 4 6 8 10 Water Adapted from Fig. 11.1, Callister & Rethwisch 9e. Question: What is the solubility limit for sugar in water at 20°C? 65 Answer: 65 wt% sugar. At 20°C, if C < 65 wt% sugar: syrup At 20°C, if C > 65 wt% sugar: syrup + sugar

Components and Phases • Components: • Phases: β (lighter phase) α The elements or compounds which are present in the alloy (e.g., Al and Cu) • Phases: The physically and chemically distinct material regions that form (e.g., α and β). Aluminum- Copper Alloy β (lighter phase) α (darker phase) Adapted from chapter-opening photograph, Chapter 9, Callister, Materials Science & Engineering: An Introduction, 3e.

Phase Diagrams • Indicate phases as a function of T, C, and P. • For this course: - binary systems: just 2 components. - independent variables: T and C (P = 1 atm is almost always used). wt% Ni 20 40 60 80 100 1000 1100 1200 1300 1400 1500 1600 T(°C) L (liquid) α (FCC solid solution) L + liquidus solidus • 2 phases: Phase Diagram for Cu-Ni system L (liquid) α (FCC solid solution) • 3 different phase fields: L L + α α Fig. 11.3(a), Callister & Rethwisch 9e. (Adapted from Phase Diagrams of Binary Nickel Alloys, P. Nash, Editor, 1991. Reprinted by permission of ASM International, Materials Park, OH.)

Ex: Cooling of a Cu-Ni Alloy • Phase diagram: Cu-Ni system. T(°C) L (liquid) L: 35 wt%Ni Cu-Ni system • Consider microstuctural changes that accompany the cooling of a C0 = 35 wt% Ni alloy α α: 46 wt% Ni L: 35 wt% Ni 130 A + L B 46 35 C 43 32 α: 43 wt% Ni L: 32 wt% Ni D 24 36 α L: 24 wt% Ni α: 36 wt% Ni + 120 L E α (solid) α: 35 wt% Ni 110 20 3 35 4 5 C0 wt% Ni Adapted from Fig. 11.4, Callister & Rethwisch 9e.

Binary-Eutectic Systems has a special composition with a min. melting T. 2 components Cu-Ag system T(°C) Ex.: Cu-Ag system 1200 • 3 single phase regions (L, α, β) L (liquid) 1000 α L + α • Limited solubility: α: mostly Cu β: mostly Ag L + β 800 779°C β TE 8.0 71.9 91.2 600 • TE : No liquid below TE α + β : Composition at temperature TE • CE 400 200 20 40 60 CE 80 100 • Eutectic reaction L(CE) α(CαE) + β(CβE) C, wt% Ag Fig. 11.6, Callister & Rethwisch 9e [Adapted from Binary Alloy Phase Diagrams, 2nd edition, Vol. 1, T. B. Massalski (Editor-in-Chief), 1990. Reprinted by permission of ASM International, Materials Park, OH.]. cooling heating

EX 2: Pb-Sn Eutectic System • For a 40 wt% Sn-60 wt% Pb alloy at 220°C, determine: -- the phases present: Pb-Sn system Answer: α + L L + β α 200 T(°C) C, wt% Sn 20 60 80 100 300 L (liquid) 183°C -- the phase compositions Answer: Cα = 17 wt% Sn CL = 46 wt% Sn -- the relative amount of each phase 220 17 Cα R 40 C0 S 46 CL Answer: W α = CL - C0 CL - Cα 46 - 40 46 - 17 6 29 = 0.21 Fig. 11.7, Callister & Rethwisch 9e. [Adapted from Binary Alloy Phase Diagrams, 2nd edition, Vol. 3, T. B. Massalski (Editor-in-Chief), 1990. Reprinted by permission of ASM International, Materials Park, OH.] WL = C0 - Cα CL - Cα 23 29 = 0.79

Microstructural Developments in Eutectic Systems II L: C0 wt% Sn • For alloys for which 2 wt% Sn < C0 < 18.3 wt% Sn • Result: at temperatures in α + β range -- polycrystalline with α grains and small β-phase particles Pb-Sn system L + α 200 T(°C) C , wt% Sn 10 18.3 20 C0 300 100 30 β 400 (sol. limit at TE) TE 2 (sol. limit at T room ) L α α: C0 wt% Sn α β Fig. 11.11, Callister & Rethwisch 9e.

Microstructural Developments in Eutectic Systems III • For alloy of composition C0 = CE • Result: Eutectic microstructure (lamellar structure) -- alternating layers (lamellae) of α and β phases. Fig. 11.13, Callister & Rethwisch 9e. (From Metals Handbook, 9th edition, Vol. 9, Metallography and Microstructures, 1985. Reproduced by permission of ASM International, Materials Park, OH.) 160 μm Micrograph of Pb-Sn eutectic microstructure Pb-Sn system Lβ αβ 200 T(°C) C, wt% Sn 20 60 80 100 300 L α β + 183°C 40 TE L: C0 wt% Sn CE 61.9 18.3 α: 18.3 wt%Sn 97.8 β: 97.8 wt% Sn Fig. 11.12, Callister & Rethwisch 9e.

Microstructural Developments in Eutectic Systems IV • For alloys for which 18.3 wt% Sn < C0 < 61.9 wt% Sn • Result: α phase particles and a eutectic microconstituent WL = (1- W α ) = 0.50 Cα = 18.3 wt% Sn CL = 61.9 wt% Sn S R + Wα = • Just above TE : Fig. 11.15, Callister & Rethwisch 9e. Pb-Sn system L + β 200 T(°C) C, wt% Sn 20 60 80 100 300 α 40 TE L: C0 wt% Sn L α L α 18.3 61.9 S R 97.8 S R primary α eutectic β • Just below TE : C α = 18.3 wt% Sn β = 97.8 wt% Sn S R + W = = 0.73 = 0.27

Eutectic, Eutectoid, & Peritectic Eutectic - liquid transforms to two solid phases L α + β (For Pb-Sn, 183°C, 61.9 wt% Sn) cool heat Eutectoid – one solid phase transforms to two other solid phases S2 S1+S3 γ α + Fe3C (For Fe-C, 727°C, 0.76 wt% C) intermetallic compound - cementite cool heat cool heat Peritectic - liquid and one solid phase transform to a second solid phase S1 + L S2 δ + L γ (For Fe-C, 1493°C, 0.16 wt% C)

Eutectoid & Peritectic Peritectic transformation γ + L δ Cu-Zn Phase diagram Eutectoid transformation δ γ + e Fig. 11.20, Callister & Rethwisch 9e. [Adapted from Binary Alloy Phase Diagrams, 2nd edition, Vol. 2, T. B. Massalski (Editor-in-Chief), 1990. Reprinted by permission of ASM International, Materials Park, OH.]

Phase Rule Phase Rule: 상태조건 T,P,C와 미세조직상과 관련 미세조직형성을 알기 위해서 상태도를 알아야 하며, 이를 위해 상률을 알아야 한다 F = C – P + 2 (T & P) 1기압: F = C – P + 1

fig_09_24 fig_09_24

Iron-Carbon (Fe-C) Phase Diagram • 2 important Fig. 11.23, Callister & Rethwisch 9e. [Adapted from Binary Alloy Phase Diagrams, 2nd edition, Vol. 1, T. B. Massalski (Editor-in-Chief), 1990. Reprinted by permission of ASM International, Materials Park, OH.] Fe3C (cementite) 1600 1400 1200 1000 800 600 400 1 2 3 4 5 6 6.7 L γ (austenite) +L +Fe3C α + δ (Fe) C, wt% C 1148°C T(°C) 727°C = T eutectoid points - Eutectic (A): L Þ γ + Fe3C A - Eutectoid (B): γ Þ α + Fe3C L+Fe3C γ Result: Pearlite = alternating layers of α and Fe3C phases 120 μm Fig. 11.26, Callister & Rethwisch 9e. (From Metals Handbook, Vol. 9, 9th ed., Metallography and Microstructures, 1985. Reproduced by permission of ASM International, Materials Park, OH.) 0.76 B Fe3C (cementite-hard) α (ferrite-soft) 4.30

Hypoeutectoid Steel a T(°C) δ L +L γ (austenite) Fe3C (cementite) α 1600 1400 1200 1000 800 600 400 1 2 3 4 5 6 6.7 L γ (austenite) +L + Fe3C α L+Fe3C δ (Fe) C, wt% C 1148°C T(°C) a 727°C (Fe-C System) C0 0.76 γ γ Adapted from Figs. 11.23 and 11.28, Callister & Rethwisch 9e. [Figure 9.24 adapted from Binary Alloy Phase Diagrams, 2nd edition, Vol. 1, T. B. Massalski (Editor-in-Chief), 1990. Reprinted by permission of ASM International, Materials Park, OH.] γ α α pearlite Adapted from Fig. 11.29, Callister & Rethwisch 9e. (Photomicrograph courtesy of Republic Steel Corporation.) proeutectoid ferrite pearlite 100 μm Hypoeutectoid steel

Hypoeutectoid Steel T(°C) δ L +L γ (austenite) Fe3C (cementite) 1600 1400 1200 1000 800 600 400 1 2 3 4 5 6 6.7 L γ (austenite) +L + Fe3C α L+Fe3C δ (Fe) C, wt% C 1148°C T(°C) 727°C (Fe-C System) C0 0.76 γ α Adapted from Figs. 11.23 and 11.28, Callister & Rethwisch 9e. [Figure 9.24 adapted from Binary Alloy Phase Diagrams, 2nd edition, Vol. 1, T. B. Massalski (Editor-in-Chief), 1990. Reprinted by permission of ASM International, Materials Park, OH.] Wα = s/(r + s) Wγ =(1 - Wα) s r α pearlite R S Wpearlite = Wγ Wα’ = S/(R + S) W =(1 – Wα’) Fe3C Adapted from Fig. 11.29, Callister & Rethwisch 9e. (Photomicrograph courtesy of Republic Steel Corporation.) proeutectoid ferrite pearlite 100 μm Hypoeutectoid steel

Hypereutectoid Steel T(°C) δ L +L γ γ (austenite) Fe3C (cementite) γ γ 1600 1400 1200 1000 800 600 400 1 2 3 4 5 6 6.7 L γ (austenite) +L + Fe3C α L+Fe3C δ (Fe) C, wt% C 1148°C T(°C) 727°C (Fe-C System) C0 γ γ Adapted from Figs. 11.23 and 11.31, Callister & Rethwisch 9e. [Figure 9.24 adapted from Binary Alloy Phase Diagrams, 2nd edition, Vol. 1, T. B. Massalski (Editor-in-Chief), 1990. Reprinted by permission of ASM International, Materials Park, OH.] Fe3C γ pearlite C0 0.76 Adapted from Fig. 11.32, Callister & Rethwisch 9e. (Copyright 1971 by United States Steel Corporation.) proeutectoid Fe3C 60 μm Hypereutectoid steel pearlite

Hypereutectoid Steel Fe3C (cementite) L γ (austenite) +L α δ T(°C) γ x 1600 1400 1200 1000 800 600 400 1 2 3 4 5 6 6.7 L γ (austenite) +L + Fe3C α L+Fe3C δ (Fe) C, wt% C 1148°C T(°C) 727°C (Fe-C System) C0 Fe3C γ Adapted from Figs. 11.23 and 11.31, Callister & Rethwisch 9e. [Figure 9.24 adapted from Binary Alloy Phase Diagrams, 2nd edition, Vol. 1, T. B. Massalski (Editor-in-Chief), 1990. Reprinted by permission of ASM International, Materials Park, OH.] W =(1-Wγ) Wγ =x/(v + x) Fe3C x v pearlite V X C0 0.76 Wpearlite = Wγ Wα = X/(V + X) W =(1 - Wα) Fe3C’ Adapted from Fig. 11.32, Callister & Rethwisch 9e. (Copyright 1971 by United States Steel Corporation.) proeutectoid Fe3C 60 μm Hypereutectoid steel pearlite

Alloying with Other Elements • Teutectoid changes: Fig. 11.33, Callister & Rethwisch 9e. (From Edgar C. Bain, Functions of the Alloying Elements in Steel, 1939. Reproduced by permission of ASM International, Materials Park, OH.) T Eutectoid (ºC) wt. % of alloying elements Ti Ni Mo Si W Cr Mn • Ceutectoid changes: Fig. 11.34,Callister & Rethwisch 9e. (From Edgar C. Bain, Functions of the Alloying Elements in Steel, 1939. Reproduced by permission of ASM International, Materials Park, OH.) wt. % of alloying elements C eutectoid (wt% C) Ni Ti Cr Si Mn W Mo

Summary • Phase diagrams are useful tools to determine: -- the number and types of phases present, -- the composition of each phase, -- and the weight fraction of each phase given the temperature and composition of the system. • The microstructure of an alloy depends on -- its composition, and -- whether or not cooling rate allows for maintenance of equilibrium. • Important phase diagram phase transformations include eutectic, eutectoid, and peritectic.