Department of Geoinformation Science Technische Universität Berlin WS 2006/07 Geoinformation Technology: lecture 9b Triangulated Networks Prof. Dr. Thomas.

Slides:



Advertisements
Similar presentations
Order-k Voronoi Diagram in the Plane
Advertisements

12.3 Surface Area of Pyramids and Cones
Department of Geoinformation Science Technische Universität Berlin Geo-Databases: lecture 8 Management of Spatial Data Prof. Dr. Thomas H. Kolbe Institute.
Introduction to Computational Geometry Computational Geometry, WS 2007/08 Lecture 1 – Part I Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut.
Department of Geoinformation Science Technische Universität Berlin WS 2006/07 Geoinformation Technology: lecture 9a Triangulated Networks Prof. Dr. Thomas.
Proximity graphs: reconstruction of curves and surfaces
Computational Geometry II Brian Chen Rice University Computer Science.
Department of Geoinformation Science Technische Universität Berlin WS 2006/07 Geoinformation Technology: Voronoi Diagrams Alexandra Stadler Institute for.
By Groysman Maxim. Let S be a set of sites in the plane. Each point in the plane is influenced by each point of S. We would like to decompose the plane.
Convex Hulls in 3-space Jason C. Yang.
DEpthLAUNAY1 DEpthLAUNAY Manuel Abellanas Alfredo de las Vegas Facultad de Informática - UPM.
3/5/15CMPS 3130/6130 Computational Geometry1 CMPS 3130/6130 Computational Geometry Spring 2015 Delaunay Triangulations II Carola Wenk Based on: Computational.
Spatial Analysis – vector data analysis
1st Meeting Industrial Geometry Computational Geometry ---- Some Basic Structures 1st IG-Meeting.
Digital Terrain Model (DTM)
Spatial Information Systems (SIS)
Computational Geometry -- Voronoi Diagram
2. Voronoi Diagram 2.1 Definiton Given a finite set S of points in the plane , each point X of  defines a subset S X of S consisting of the points of.
3. Delaunay triangulation
1cs542g-term Notes. 2 Meshing goals  Robust: doesn’t fail on reasonable geometry  Efficient: as few triangles as possible Easy to refine later.
Delaunay Triangulation Computational Geometry, WS 2006/07 Lecture 11 Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik Fakultät.
1 Lecture 8: Voronoi Diagram Computational Geometry Prof. Dr. Th. Ottmann Voronoi Diagrams Definition Characteristics Size and Storage Construction Use.
I/O-Efficient Construction of Constrained Delaunay Triangulations Pankaj K. Agarwal, Lars Arge, and Ke Yi Duke University.
CS 128/ES Lecture 12b1 Spatial Analysis (3D)
CS 128/ES Lecture 12b1 Spatial Analysis (3D)
WFM 6202: Remote Sensing and GIS in Water Management
By Dor Lahav. Overview Straight Skeletons Convex Polygons Constrained Voronoi diagrams and Delauney triangulations.
UMass Lowell Computer Science Advanced Algorithms Computational Geometry Prof. Karen Daniels Spring, 2007 Chapter 5: Voronoi Diagrams Wednesday,
Voronoi Diagrams Computational Geometry, WS 2006/07 Lecture 10 Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik Fakultät.
Introduction to Computational Geometry Computational Geometry, WS 2007/08 Lecture 1 – Part II Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut.
UMass Lowell Computer Science Advanced Algorithms Computational Geometry Prof. Karen Daniels Spring, 2004 Chapter 5: Voronoi Diagrams Monday, 2/23/04.
Lecture 10 : Delaunay Triangulation Computational Geometry Prof. Dr. Th. Ottmann 1 Overview Motivation. Triangulation of Planar Point Sets. Definition.
Closest Pair of Points Computational Geometry, WS 2006/07 Lecture 9, Part II Prof. Dr. Thomas Ottmann Khaireel A. Mohamed Algorithmen & Datenstrukturen,
Computing the Delaunay Triangulation By Nacha Chavez Math 870 Computational Geometry; Ch.9; de Berg, van Kreveld, Overmars, Schwarzkopf By Nacha Chavez.
1 University of Denver Department of Mathematics Department of Computer Science.
Lab 3 hydrological application using GIS. Deriving Runoff Characteristics ArcGIS Flow Diagram Load DEM Fill sinks Compute flow direction Compute flow.
Quadtrees and Mesh Generation Student Lecture in course MATH/CSC 870 Philipp Richter Thursday, April 19 th, 2007.
Art Gallery Theorem Computational Geometry, WS 2006/07 Lecture 8, Part 1 Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik.
UNC Chapel Hill M. C. Lin Point Location Chapter 6 of the Textbook –Review –Algorithm Analysis –Dealing with Degeneracies.
ADA: 14. Intro to CG1 Objective o give a non-technical overview of Computational geometry, concentrating on its main application areas Algorithm.
Prisms Prism – Every prism has two congruent faces which are polygonal regions and lie in parallel planes. These polygonal regions are called bases.
Voronoi diagrams and applications Prof. Ramin Zabih
PRE-TRIANGULATIONS Generalized Delaunay Triangulations and Flips Franz Aurenhammer Institute for Theoretical Computer Science Graz University of Technology,
Department of Geoinformation Science Technische Universität Berlin WS 2006/07 Geoinformation Technology: lecture 3 Mapping of OO Models onto Tables Prof.
Geometry B Section 12.3 Surface Area of Pyramids and Cones.
Spatial Databases: Digital Terrain Model Spring, 2015 Ki-Joune Li.
Line Segment Intersection Computational Geometry, WS 2006/07 Lecture 3 – Part III Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für.
Computational Geometry The systematic study of algorithms and data structures for geometric objects, with a focus on exact algorithms that are asymptotically.
L8 - Delaunay triangulation L8 – Delaunay triangulation NGEN06(TEK230) – Algorithms in Geographical Information Systems.
UNC Chapel Hill M. C. Lin Delaunay Triangulations Reading: Chapter 9 of the Textbook Driving Applications –Height Interpolation –Constrained Triangulation.
Zero Skew Clock Routing ECE 556 Project Proposal John Thompson Kurt Ting Simon Wong.
Department of Geoinformation Science Technische Universität Berlin WS 2006/07 Geoinformation Technology: lecture 2 (b) Object Modeling Prof. Dr. Thomas.
Spatial Analysis – vector data analysis Lecture 8 10/12/2006.
Bigyan Ankur Mukherjee University of Utah. Given a set of Points P sampled from a surface Σ,  Find a Surface Σ * that “approximates” Σ  Σ * is generally.
Coverage and Deployment 1. Coverage Problems Coverage: is a measure of the Quality of Service (QoS) of a sensor network How well can the network observe.
How does a river system work? Learning Outcome: I will understand what a drainage basin is. I will understand how the river basin system works. STARTER.
CMPS 3130/6130 Computational Geometry Spring 2017
Surface Area of Pyramids and Cones
Introduction to Spatial Computing CSE 555
Principles of GIS Geocomputation – Part II Shaowen Wang
12.3 Surface Area of Pyramids and Cones
Chapter 7 Voronoi Diagrams
Geo-Databases: lecture 2 The Relational Data Model
12.3 Surface Area of Pyramids and Cones
Spatial Databases: Digital Terrain Model
Geo-Databases: lecture 5 Data Manipulation in SQL
Geo-Databases: lecture 6 Data Integrity
Geo-Databases: lecture 3 Simple Queries in SQL
Geo-Databases: lecture 4 Complex Queries in SQL
Spatial Databases: Digital Terrain Model
Presentation transcript:

Department of Geoinformation Science Technische Universität Berlin WS 2006/07 Geoinformation Technology: lecture 9b Triangulated Networks Prof. Dr. Thomas H. Kolbe Institute for Geodesy and Geoinformation Science Technische Universität Berlin Credits: This material is mostly an english translation of the course module no. 2 (Geoobjekte und ihre Modellierung) of the open e-content platform

2 T. H. Kolbe – Geoinformation Technology: lecture 9 Department of Geoinformation Science WS 2006/07 Excursion: Voronoi Diagrams Given: a set M of n points in a plane The Voronoi diagram of the point set divides the plane into n disjoint areas (Voronoi regions). The Voronoi region of one point p contains exactly one of the points of M as well as all points q, which lie closer to p than to every other point p M with pp (areas of same nearest neighbours).

3 T. H. Kolbe – Geoinformation Technology: lecture 9 Department of Geoinformation Science WS 2006/07 Voronoi Diagram & Delaunay Triangulation the Voronoi diagram immediately provides the Delaunay triangulation connect the nodes of neighbouring faces by (yellow) edges the yellow edges constitute the wanted Delaunay TIN note: the yellow Delaunay edges stand perpendicularly on the dashed Voronoi edges the Delaunay triangulation is the dual graph of the Voronoi diagram

4 T. H. Kolbe – Geoinformation Technology: lecture 9 Department of Geoinformation Science WS 2006/07 TINs with Break Lines problem: The edges of topographic objects should be considered within the triangulation aim: break lines are aggregations of triangle edges inserting break lines leads to a finer triangle structure In general, this triangulation does not fulfill the Delaunay criterion

5 T. H. Kolbe – Geoinformation Technology: lecture 9 Department of Geoinformation Science WS 2006/07 Constrained Delaunay Triangulation Visibility of points: P is visible from Q, if the straight connection PQ does not intersects a break line. The constrained circle criterion: no visible fourth node lies in the perimeter of a triangle Constrained Delaunay triangulations fulfill the constrained circle criterion This criterion provides an algorithm for the insertion of break lines to a (constrained) Delaunay triangulation ( exercise).

6 T. H. Kolbe – Geoinformation Technology: lecture 9 Department of Geoinformation Science WS 2006/07 Triangulated Networks - Example Siebengebirge Rhine river Bonn

7 T. H. Kolbe – Geoinformation Technology: lecture 9 Department of Geoinformation Science WS 2006/07 Traingulated Networks - Example Siebengebirge

8 T. H. Kolbe – Geoinformation Technology: lecture 9 Department of Geoinformation Science WS 2006/07 Application Example for TINs Analysis of differences in height (water flow) leads to 3 edge types: transfluent edge: water flows from neighbouring triangle over the edge away confluent edge (drain): water from at least one triangle flows off along the edge diffluent edge (watershed): neither diffluent nor confluent

9 T. H. Kolbe – Geoinformation Technology: lecture 9 Department of Geoinformation Science WS 2006/07 Simple Drainage Model simplifying assumption: the earth's surface is impermeable confluent edges form the hydrography diffluent edges form water sheds transfluent confluent: direction of water drain diffluent: border of a catchment area

10 T. H. Kolbe – Geoinformation Technology: lecture 9 Department of Geoinformation Science WS 2006/07 Triangle networks Literature Lenk, Ulrich: 2.5D-GIS und Geobasisdaten-Integration von Höheninformationen und Digitalen Situationsmodellen. PhD thesis, Institute for Photogrammetry and Geoinformation, University of Hannover, 2001 Worboys, Michael F.: GIS: A Computing Perspective. Taylor & Francis Inc., London 1995