A New Line List for A2Σ+-X2П Electronic Transition of OH

Slides:



Advertisements
Similar presentations
R.S. RAM, K. TERESZCHUK, I. GORDON 1, K.A. WALKER 2 and P. F. BERNATH Department of Chemistry, University of York, Heslington, York YO10 5DD, UK. 1 Harvard-Smithsonian.
Advertisements

Colin M. Western School of Chemistry, University of Bristol, Bristol BS8 1TS, UK Recent Changes in PGOPHER: A General.
Spectroscopy for Hot Super- Earth Exoplanets P. F. Bernath and M. Dulick Department of Chemistry & Biochemistry Old Dominion University, Norfolk, VA.
1 OBSERVATION OF TWO  =0 + EXCITED ELECTRONIC STATES IN JET-COOLED LaH Suresh Yarlagadda Ph.D Student Homi Bhabha National Institute Bhabha Atomic Research.
James S.A. Brooke a *, Peter F. Bernath b, Colin M. Western c, Timothy W. Schmidt d, George B. Bacskay d, Marc C. van Hermert e & Gerrit C. Groenenboom.
ASTRONOMICAL APPLICATIONS OF NEW LINE LISTS FOR CN, C 2 AND THEIR ISOTOPOLOGUES P. F. Bernath Department of Chemistry and Biochemistry, Old Dominion University,
Vibrational Spectroscopy I
The spectral method: time-dependent quantum dynamics of FHF - : Potential Energy Surface, Vibrational Eigenfunctions and Infrared Spectrum. Guillermo Pérez.
Theoretical work on the water monomer and dimer Matt Barber Jonathan Tennyson University College London September 2009.
Chemistry 6440 / 7440 Vibrational Frequency Calculations.
S&MPO linelist of 16 O 3 in the range 6000 – 7000 cm -1. M.-R. De Backer-Barilly #, Semen N. Mikhailenko*, Yurii Babikov*, Alain Campargue §, Samir Kassi.
Theoretical work on the water monomer Matt Barber Jonathan Tennyson University College London
Vibrational Transitions
IR EMISSION SPECTROSCOPY OF AMMONIA: LINELISTS AND ASSIGNMENTS. R. Hargreaves, P. F. Bernath Department of Chemistry, University of York, UK N. F. Zobov,
Spectroscopic Analysis Part 4 – Molecular Energy Levels and IR Spectroscopy Chulalongkorn University, Bangkok, Thailand January 2012 Dr Ron Beckett Water.
Einstein A coefficients for vibrational-rotational transitions of NO
Molecular Spectroscopy Symposium June 2011 ROTATIONAL SPECTROSCOPY OF HD 18 O John C. Pearson, Shanshan Yu, Harshal Gupta, and Brian J. Drouin,
VADIM L. STAKHURSKY *, LILY ZU †, JINJUN LIU, TERRY A. MILLER Laser Spectroscopy Facility, Department of Chemistry, The Ohio State University 120 W. 18th.
ExoMol: molecular line lists for astrophysical applications
Laser Excitation and Fourier Transform Emission Spectroscopy of ScS R. S. Ram Department of Chemistry, University of Arizona, Tucson, AZ J. Gengler,
TiH IN SUBDWARFS P. F. Bernath Department of Chemistry, University of Waterloo, Waterloo, Ont., Canada N2L 3G1 C.W. Bauschlicher, Jr NASA Ames Research.
Laser spectroscopy of Iridium monophosphide H. F. Pang, Y. Xia, A. W. Liu and A. S-C. Cheung Department of Chemistry, The University of Hong Kong, Pokfulam.
FTIR EMISSION SPECTROSCOPY AND AB INITIO STUDY OF THE TRANSIENT BO AND HBO MOLECULES 65 th Ohio State University International Symposium on Molecular Spectroscopy.
Modeling Linear Molecules as Carriers of the 5797 and 6614 Å Diffuse Interstellar Bands Jane Huang, Takeshi Oka 69 th International Symposium on Molecular.
Electronic Spectroscopy of Palladium Dimer (Pd 2 ) 68th OSU International Symposium on Molecular Spectroscopy Yue Qian, Y. W. Ng and A. S-C. Cheung Department.
O 2 ENERGY LEVELS, BAND CONSTANTS, POTENTIALS, FRANCK- CONDON FACTORS AND LINELISTS INVOLVING THE X 3  g, a 1  g AND b 1  + g STATES SHANSHAN YU, BRIAN.
60th Ohio State University Symposium on Molecular Spectroscopy June 20–24, 2005 XTDS: A Java-Based Interface to Analyze and Simulate Spectra of Various.
65th Ohio State University Symposium on Molecular Spectroscopy June 21–25, 2010 Stark spectrum simulation of X 2 Y 4 asymmetric molecules: application.
Thomas Masseron ULB In collaboration with P. Neyskens, A. Jorissen, S. Van Eck, B.Plez, M. Godefroid, P.F. Coheur, R. Colin.
The Complete, Temperature Resolved Spectrum Of Methyl Formate Between 214 and 265 GHz JAMES P. MCMILLAN, SARAH M. FORTMAN, CHRISTOPHER F. NEESE, and FRANK.
Fourier Transform Emission Spectroscopy of Some New Bands of ReN R. S. Ram Department of Chemistry, University of Arizona, Tucson, AZ and P. F. Bernath.
D. Zhao, K.D. Doney, H. Linnartz Sackler Laboratory for Astrophysics, Leiden Observatory, University of Leiden, the Netherlands T he 3 μm Infrared Spectra.
Ro-vibrational Line Lists for Nine Isotopologues of CO Suitable for Modeling and Interpreting Spectra at Very High Temperatures and Diverse Environments.
HIGH RESOLUTION SPECTROSCOPY OF THE B 2 A 1 - X 2 A 1 TRANSITION OF CaCH 3 and SrCH 3 P. M. SHERIDAN, M. J. DICK, J. G. WANG AND P. F. BERNATH University.
Laser Spectroscopy of the C 1 Σ + – X 1 Σ + Transition of ScI ZHENWU LIAO, MEI YANG, MAN-CHOR CHAN Department of Chemistry, The Chinese University of Hong.
An Experimental Approach to the Prediction of Complete Millimeter and Submillimeter Spectra at Astrophysical Temperatures Ivan Medvedev and Frank C. De.
June 18, 2008The University of Illinois 1 Continuous-wave Cavity Ringdown Study of the First Positive Band System of N 2 * Brett A. McGuire Susanna L.
Fourier Transform Emission Spectroscopy of New Visible Systems of NbN R. S. Ram Department of Chemistry, University of Arizona, Tucson, AZ And P.
Population distribution of vibrational levels in the 21 state of NaLi
& DETECTION AND CHARACTERIZATION OF THE STANNYLENE (SnH2) FREE RADICAL.
The Rovibronic Spectra of The Cyclopentadienyl Radical (C5H5)
Professor : Ourida OUAMERALI
International Symposium on Molecular Spectroscopy
INFRARED SPECTROSCOPY OF DISILICON-CARBIDE, Si2C
Michael N. Sullivan*, Jacob T. Stewart†, Michael C. Heaven*
Molecular Line Absorption Coefficients:
A Green Bank Telescope Search for ortho-benzyne (o-C6H4) in CRL 618
Optical Stark Spectroscopy and Hyperfine study of Gold Sulfide (AuS)
Andy Wong Robert J. Hargreaves Peter F. Bernath Michaël Rey
Is HO2+ a Detectable Interstellar Molecule?
Experimental Mapping of the Absolute Value of the Transition Dipole Moment Function μe(R) of the Na2 A1Σu+ - X1Σg+ Transition E. Ahmed1, B. Beser1, P.
3-Dimensional Intermolecular Potential Energy Surface of Ar-SH(2Pi)
Mitsunori ARAKI, Hiromichi WAKO, Kei NIWAYAMA and Koichi TSUKIYAMA○
Timothy C. Steimle , T. Maa, S. Muscarella, and Damian Kokkin
International Symposium on Molecular Spectroscopy
Kaitlin Womack, Taylor Dahms, Leah O’Brien Department of Chemistry
Tokyo Univ. Science Mitsunori Araki, Yuki Matsushita, Koichi Tsukiyama
Optical Stark Spectroscopy and Hyperfine study of Gold Sulfide (AuS)
Analysis of the Rotationally Resolved Spectra to the Degenerate (
Laser spectroscopy and ab initio calculations on TaF
CHONG TAO, D. BRUSSE, Y. MISHCHENKO, C. MUKARAKATE and S. A. REID,
High Resolution Infrared Spectroscopy of Linear Cluster Ions
Stability of the HOOO Radical via Infrared Action Spectroscopy
Fourier Transform Emission Spectroscopy of CoH and CoD
Fourier Transform Infrared Spectral
A Theoretical Search for an Electronic Spectrum of the He–BeO Complex
Electronic spectroscopy of DCF
Harmonic Oscillator.
Rotational Energy Levels for rigid rotor: Where Rotational Spectra of Rigid Diatomic molecule. BY G JANAKIRAMAN EGS A&S COLLAGE
Presentation transcript:

A New Line List for A2Σ+-X2П Electronic Transition of OH Mahdi Yousefi and Dr. Peter F. Bernath June 20, 2017

Importance of OH Radical OH in astronomy Interstellar medium Comets Dark interstellar clouds OH in combustion Flames OH also has atmospheric importance Most important oxidizer in the atmosphere The source of airglow (Meinel bands) P. Felenbok and E. Roueff, OH in the line of sight to HD 27778 and ζ Persei, AJ, 465, 57–60, (1996)

Some Previous Studies on OH Stark et al., Fourier-transform spectra of the A2Σ+-X2П Δv=0 of OH and OD, J. Opt. Soc. Am. B 11, 3-32 (1994) J. A. Coxon, Optimum molecular constants and term values for the X2П(v≤ 5) and A2Σ+ (v≤3) states of OH, Can. J. Phys. 58, 933 (1980) J. S. A. Brooke et al., Line strengths of rovibrational and rotational transitions in the X2П ground state of OH, JQSRT 168, 142-157 (2016) J. Luque et al., Transition probabilities in the A2Σ+-X2П electronic system of OH, JCP 109, 439 (1998) C. W. Bauschlicher Jr. and S. R. Langhoff, Theoretical determination of the radiative lifetime of the A2Σ+-X2П state of OH, JCP 87, 4665 (1987) A. C. P. Bittencourt et al., The fitting of potential energy and transition moment functions using neural networks: transition probabilities in OH (A2Σ+−X2П), CP 297, 153– 161 (2004)

Main Goal of Current Study Calculating an extensive linelist for OH A-X electronic transition Improve the line intensities by 1. calculating new transition dipole moment function and 2. including Herman-Wallis effect (J dependent line intensities) A2Σ+ : v=0-4 X2П : v=0-13 E.L. Derro et al., Fluorescence-dip infrared spectroscopy and predissociation dynamics of OH A2Σ+ (v=4) radicals, JCP 122, 244313 (2005)

Sources Used for The Main Observed Lines Stark et al. (1994): A2Σ+- X2П v′-v″=(0,0), (1,1), (2,2) J. A. Coxon (1980) and (1994): A2Σ+-X2П v′-v″=(3,2), (3,3), (4,2); E.L. Derro et al. (2005) A2Σ+- A2Σ+ v′-v″=(4,2) J. S. A. Brooke et al. (2016): X2П-X2П v′-v″=(0,0), (1,0), (1,1), (2,0), (2,1), (2,2), (3,0), (3,1), (3,2), (3,3), (4,1), (4,2), (4,3), (4,4), (5,3), (5,4), (6,4), (6,5), (7,4), (7,5), (7,6), (8,5), (8,6), (8,7), (8,8), (9,6), (9,7), (9,8), (10,8), (10,9), (11,9)

Overall Method for The Production of Line Lists R.J. Le Roy, RKR1: A computer program implementing the first-order RKR method for determining diatomic molecule potential, JQSRT 186, 158–166 (2017) R.J. Le Roy, A computer program for solving the radial Schrödinger equation for bound and quasi-bound levels, JQSRT 186, 1567–178 (2017) C.M. Western, PGOPHER: A program for simulating rotational, vibrational and electronic spectra, JQSRT 186, 221–242 (2017) Stark et al., Fourier-transform spectra of the A2Σ+-X2П Δv=0 of OH and OD, J. Opt. Soc. Am. B 11, 3-32 (1994) J. A. Coxon, Optimum molecular constants and term values for the X2П (v≤ 5) and A2Σ+ (v≤3) states of OH, Can. J Phys., 58, 933 (1980)

Line Intensity and Transition Dipole Moment Function Molpro chemistry package. Calculation method. Multireference configuration Interaction (MRCI) Basis set. aug-cc-pv6z J. Luque et al., Transition probabilities in the A2Σ+-X2П electronic system of OH, JCP 109, 439 (1998) C.W. Bauschlicher Jr. and S.R. Langhoff, Theoretical determination of the radiative lifetime of the A2Σ+-X2П state of OH, JCP 87, 4665 (1987) A.P. Bittencourt et al., The fitting of potential energy and transition moment functions using neural networks: transition probabilities in OH (A2Σ+−X2П), CP 297, 153–161 (2004)

Overall Method for The Production of Line Lists R.J. Le Roy, RKR1: A computer program implementing the first-order RKR method for determining diatomic molecule potential, JQSRT 186, 158–166 (2017) R.J. Le Roy, A computer program for solving the radial Schrödinger equation for bound and quasi-bound levels, JQSRT 186, 1567–178 (2017) C.M. Western, PGOPHER: A program for simulating rotational, vibrational and electronic spectra, JQSRT 186, 221–242 (2017) Stark et al., Fourier-transform spectra of the A2Σ+-X2П Δv=0 of OH and OD, J. Opt. Soc. Am. B 11, 3-32 (1994) J. A. Coxon, Optimum molecular constants and term values for the X2П (v≤ 5) and A2Σ+ (v≤3) states of OH, Can. J Phys., 58, 933 (1980)

Transformation from Hund’s Case b to Case a Matrix elements from LEVEL output Matrix elements input to PGopher J.S.A. Brooke et al., Line strengths of rovibrational and rotational transitions in the X2П ground state of OH, JQSRT 168, 142-157 (2016)

Overall Method for The Production of Line Lists R.J. Le Roy, RKR1: A computer program implementing the first-order RKR method for determining diatomic molecule potential, JQSRT 186, 158–166 (2017) R.J. Le Roy, A computer program for solving the radial Schrödinger equation for bound and quasi-bound levels, JQSRT 186, 1567–178 (2017) C.M. Western, PGOPHER: A program for simulating rotational, vibrational and electronic spectra, JQSRT 186, 221–242 (2017) Stark et al., Fourier-transform spectra of the A2Σ+-X2П Δv=0 of OH and OD, J. Opt. Soc. Am. B 11, 3-32 (1994) J. A. Coxon, Optimum molecular constants and term values for the X2П (v≤ 5) and A2Σ+ (v≤3) states of OH, Can. J Phys., 58, 933 (1980)

New Spectroscopic Constants for A2Σ+ State (in cm-1)   v=0 v=1 v=2 v=3 v=4 T0 32420.90884(21) 35409.50797(57) 38202.5736(17) 40796.1079(53) 43181.740(23) Bv 16.9651988(72) 16.129506(23) 15.28676(18) 14.4223(10) 13.5165(10) Dv 0.00206467(40) 0.00204754(23) 0.00205568(43) 0.0020646(36) 0.0021427(82) Hv 1.28331(83)×10-7 1.1238(79)×10-7 1.49(26)×10-7 Lv -2.1250(48)×10-11 -2.602(86)×10-11 γv 0.226169(62) 0.216936(91) 0.2129(71) 0.195955(59) 0.1862(47) γD -4.789(29)×10-5 -4.465(33)×10-5 -0.000179(13) γH 4.57(31)×10-9

Weighted Residuals

Einstein A Values of A2Σ+-X2П (v′,v″) Av′v″ (s-1) Av′v″ (s-1) (Luque et al.) 0,0 1.467×106 1.451×106 0,1 5.905×103 6.921×103 1,0 4.750×105 4.643×105 1,1 8.422×105 8.595×105 1,2 7.302×103 8.207×103 2,0 9.706×104 9.202×104 2,1 7.022×105 6.852×105 2,2 4.696×105 4.472×105 3,0 1.775×104 1.551×104 3,1 2.484×105 2.374×105 3,2 7.125×105 6.928×105 3,3 2.083×105 1.931×105 4,0 3.316×103 2.850×103 4,1 6.841×104 6.310×104 4,2 3.928×105 3.777×105 4,3 5.717×105 5.495×105

Observed and Simulated OH Spectrum Observed spectrum from Stark et al. Simulated spectrum Temperature: 4000 K

Conclusion OH A-X lines were collected from literature and fit in order to calculate a more complete and updated OH linelist. New transition dipole moment function was calculated using Molpro. J dependence of the transition dipole matrix elements were calculated using transition dipole matrix elements from LEVEL as input to PGopher.

Acknowledgements Bernath group. Dr. James Hodges for his help. Dr. James Brooke for providing OH ground state data. Dr. John Coxon for providing OH A-X observed data. NASA for their support.