Gasovi- Najednostavni za prou~uvawe od site agregatni sostojbi na materijata, poradi toa {to privle~nite sili me|u molekulite na gasovite se mnogu mali.

Slides:



Advertisements
Similar presentations
Column A Column B 1 atm 760 mm Hg kPa 760 mm Hg 760 kPa
Advertisements

Gas Laws Chapters
PV = nRT.
Chapter 11b Ideal Gas Laws
Gases.
An Introduction to Gases
Chpt 5 - Gases Gas Law Development Dalton’s Partial pressure law
Gas Laws.
The Ideal Gas Law PV = nRT.
CHAPTER 12 GASES AND KINETIC-MOLECULAR THEORY
The Gas Laws.
Gases Chapter 5 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
G - L’s Law – Pressure vs. Temperature
Properties of Gases.
4. States of Matter I The gaseous state: (i) Ideal gas behaviour and deviations from it (II) pV = nRT and its use in determining a value for Mr II The.
1 Chapter 6 The States of Matter 6.8 The Combined Gas Law and Ideal Gas Law.
Mole concept applied to gases
I. Physical Properties 9 (A) describe and calculate the relations between volume, pressure, number of moles, and temperature for an ideal gas as described.
Ideal Gas Law PV=nRT.
The Ideal Gas Law. What is an Ideal Gas? A gas that behaves according to the Kinetic Molecular Theory. It obeys all the postulates of KMT.
Kinetic Molecular Theory of Gases
Gas Laws Chapter 10 CHEM140 February 2, Elements that exist as gases at 25 0 C and 1 atmosphere.
The Gas Laws Chapter 14.
Gas Laws.
Charles Law V 1 = V 2 P constant T 1 T 2 T 1 T 2 Boyles Law P 1 V 1 = P 2 V 2 T constant Combined P 1 V 1 = P 2 V 2 T 1 T 2 T 1 T 2 Gay-Lussacs Law P 1.
Gas Laws. What are gas laws??? What are gas laws??? Study of the relationships between pressure, volume, temperature, and amount of gases in a system.
Topic 10 Gases II. Gas Laws P V T.
IDEAL GAS Assumptions: 1. Non-Interacting molecules 2. Perfectly elastic collisions 3. Large number of molecules 4. Separation between molecules >diameter.
GASES Chapter 14.
The Ideal Gas Law PV = nRT.
Gas Laws.
Gas Laws.
Copyright©2000 by Houghton Mifflin Company. All rights reserved. 1 A Gas 4 Uniformly fills any container. 4 Mixes completely with any other gas 4 Exerts.
The Gas Laws 11.2.
Gases balloonfestivals.com treehuggerusa.com treehugger.com.
Gas Laws Robert Boyle Jacques Charles Amadeo Avogadro
Year 11 DP Chemistry Rob Slider
Gas Laws Lesson 2.
Gases Chapter 5 Copyright © The McGraw-Hill Companies, Inc.  Permission required for reproduction or display.
Pressure Volume Moles Temperature Common units Atmospheres (atm) mm Hg Torr kiloPascals (kPa) Pounds per square inch (psi) Bar or millibar (b or mb)
The Ideal Gas Law PV = nRT.
Ch – Ideal Gases -Avogadro’s Law (extension) -STP & molar volume of gas (review) -Ideal Gas Law (most important)
GAS LAWS!.
HL1-8.ppt Gas Laws HL Chemistry.
1 © 2006 Brooks/Cole - Thomson Importance of Gases Airbags fill with N 2 gas in an accident.Airbags fill with N 2 gas in an accident. Gas is generated.
Sit down and get ready for the test, I will hand them out when the bell rings. You have until 8:10 DMA 3/21/11.
Honors Chemistry Chapter 5 Gases.
The Ideal Gas Law.
TOPICS 1.Intermolecular Forces 2.Properties of Gases 3.Pressure 4.Gas Laws – Boyle, Charles, Lussac 5.Ideal Gas Law 6.Gas Stoichiometry 7.Partial Pressure.
Pressure Conversions 1 atm = x 105 Pa 1 bar = 1 x 105 Pa
1 CHAPTER 11 Gases and their Properties. 2 Density Comparison The density of gases is much less than that of solids or liquids: compoundSolid density.
Ideal Gas Law PV=nRT Kinetic Molecular Theory 1. Gases have low density 2. Gases have elastic collisions 3. Gases have continuous random motion. 4. Gases.
TEKS 9A: Describe and calculate the relations between volume, pressure, number of moles, and temperature for an ideal gas as described by Boyle’s law,
Chapter 10 - Gases Pressure = force/area Pop Your Top Atmospheric Pressure 1 atm = 760 mm Hg = 760 torr = 101,325 Pa = kPa.
Dr. S. M. Condren Chapter 5 The Gaseous State. Dr. S. M. Condren Properties of Gases can be compressed exert pressure on whatever surrounds them expand.
The General Gas Equation Combined Gas Law
Chapter 5 The Gaseous State HST Mr. Watson. HST Mr. Watson Properties of Gases can be compressed exert pressure on whatever surrounds them expand into.
Avogadro’s law Equal volumes of different gases at the same temperature and pressure have the same number of moles. Example: Cl2 (g) + H2 (g)
G-din Branko Azeski, g-din Branko Azeski, Pretsedatel na Pretsedatel na Stopanskata komora na Makedonija Welcome addresses Mr. Branko Azeski, President.
Ideal Gas Law Van der Waals combined Boyle’s and Charles’ Laws.
12 Gas Laws. Units Pressure is measured in a variety of units. Atmospheres, bars, torrs etc. The standard international unit of pressure is the Pascal.
The Three Gas Laws pV = constant V/T = constant
GAS LAWS Boyle’s Charles’ Gay-Lussac’s Combined Gas Ideal Gas Dalton’s Partial Pressure.
V  1/P (Boyle’s law) V  T (Charles’s law) P  T (Gay-Lussac’s law) V  n (Avogadro’s law) So far we’ve seen… PV nT = R ideal gas constant: R =
Gases. Units of Pressure 1atm. = 760mm Hg (torr) = 101,325 pascals (Pa) = kPa = psi.
PowerPoint Lecture Presentation by J
Welcome to the Gas Phase
Gases.
Welcome to the Gas Phase
Presentation transcript:

Gasovi- Najednostavni za prou~uvawe od site agregatni sostojbi na materijata, poradi toa {to privle~nite sili me|u molekulite na gasovite se mnogu mali , a toa ovozmo`uva gasovite da se studiraat bez pritoa da se zemaat vo predvid efektite na privle~nite sili.

Osnovni svojstva na gasovite Mo`at da se komprimiraat Se {irat i go zafa}aat celiot volumen vo sadot vo koj {to se nao|aat Razli~nite gasovi lesno se me{aat me|u sebe Se opi{uvaat preku nivnata temperatura, pritisokot, volumenot i brojot na molekuli (nivnoto koli~estvo supstanca)

Sostav na vozduhot

Zna~ajni edinici za pritisok definicija Faktor na konverzija

Pova`ni gasni zakoni 1. Boyle’ov Zakon-va`i pri konstanta temperatura i masa -pri konstantna temperatura i masa, volumenot na gasot e obratno proporcionalen so pritisokot Va1/P V = a * 1/P kade “a” e konstanta na proporcionalnost {to zavisi od prirodata na gasot VP = const V1P1 = a = V2P2 V1P1 = V2P2

1. Boyle’ov Zakon- va`i pri konstantna temperatura

2. Charles’-ov Zakon-va`i pri konstanten pritisok i masa Pri konstanten pritisok i masa, volumenot na sekoj gas e proporcionalen so temperaturata: VaT V = b * T Kade “b” e konstanta na proporcionalnost {to zavisi od prirodata na gasot V/T = b V1/T1 = b = V2/T2 V1/T1 = V2/T2

volumenot na sekoj gas e proporcionalen so temperaturata- povisoka temperatura=pogolem volumen i obratno

Charles’-ov Zakon

Charles’-ov zakon Volumen L Temperatura oC

Kombiniran gasen zakon Pri konstantna masa na sekoj gas, va`i relacijata VaT/P V = d * (T/P) kade “d” e konstanta na proporcionalnost (VP)/T = d V1P1 = d = V2P2 T1 T2 V1P1 = V2P2 T1 T2

Kade “g” e konstanta na proporcionalnost Avogadro’-ov zakon Pri konstanten pritisok i temperatura volumenot na sekoj gas e proporcionalen so koli~estvoto (molovite) na toj gas Van V = g * n Kade “g” e konstanta na proporcionalnost V/n = g V1/n1 = g = V2 /n2 V1/n1 = V2 /n2

Direktna posledica od Avogadroviot zakon e definicijata za Molaren volumen na gasovite Vm : Pri konstanten P (P = 101 325 Pa) i konstantna T (T = 273 K), eden mol (1 mol) od sekoj idealen gas zafa}a volumen od 22.4 dm3 (ili 22.4 L) -molaren volumen Vm Vm = V/n (Vm ima edinici dm3/mol)

Zna~i 1 mol od bilo koj gas, pri standardni uslovi, 1 mol na Neon ima masa od 20 grami 1 mol na Helium ima masa od 4 grami Zna~i 1 mol od bilo koj gas, pri standardni uslovi, zafa}a volumen od 22.4 L

Zakon za idealni gasovi PV = nRT

kade “R” e konstanta na proporcionalnost P * V = n * R * T 3. Zakon za idealni gasovi -idealen gas e onoj kaj kogo nema privle~ni sili me|u molekulite na toj gas Va(n * T)/P V = R * (n * T)/P kade “R” e konstanta na proporcionalnost P * V = n * R * T (P*V)/(n*T) =R Taka, (P1*V1)/(n1*T1) = (P2*V2)/(n2*T2) Vnimavaj: Temperaturata T vo site izrazi MORA da e izrazena vo K (kelvin) T(K) = 273,15 K + T(oC); ova e relacija pome|u termodinami~kata temperatura (T vo K) i temperaturata izrazena vo celsiusovi stepeni T(oC). Koja e temperaturata (vo oC) {to odgovara na 0 K?

Pra{awe Koj bi bil volumenot na idealen gas pri temperatura od 0K? P * V = n * R * T - 10 mL/mole 0 mL/mole 10 mL/mole

Idealna gasna konstanta-R P * V = n * R * T Pri T = 293.15 K; n = 1mol; P = 101 325 Pa R = 8.314 J/(mol*K)

Presmetuvawe na molarnata masa na gasot od gustinata na gasovite Gustina na gas (r) = m(gas)/V(na gas) PV = nRT kade n = m/M PV = (m/M)*RT M= (r*R*T)/(P*V)

Dalton’-ov zakon za parcijalnite pritisoci Vkupniot pritisok na smesa od gasovi e suma na pritisocite od poedine~nite gasovi (parcijalnite pritisoci) na gasovite {to ja so~inuvaat taa gasna smesa: PT = P1 + P2 + P3 + P4 + . . . . kade PT => vkupen pritisok P1 => paricjalen pritisok na gasot br. 1 P2 => paricjalen pritisok na gasot br. 2 P3 => paricjalen pritisok na gasot br. 3 P4 => paricjalen pritisok na gasot br. 4

Dalton’-ov zakon za parcijalnite pritisoci Pred me{aweto Posle me{aweto

Realni gasovi Imaat kone~en volumen na T od 0K Imaat privle~ni sili pome|u ~esti~kite (molekulite) {to go so~inuvaat gasot=pritisokot {to ~esti~kite od gasot go vr{at vrz yidovite na sadot e pomal odo{to bi bil presmetan vrz osnova na ravenkite za idealni gasovi. Toa e zatoa {to del od silite na ~esti~kite se anga`irani vo interakcii pome|u samite molekuli na gasot

Van der Waals -ova Ravenka za realnite gasovi (P + a/V2)(V - b) = nRT Kade a => privle~ni sili b => rezidualen volumen

[tetni gasovi vo atmosferata-efekt na staklena gradina, kako funkcionira

[to treba da se znae: -da se znae ravenkata za idealni gasovi, i da se znae kako od taa ravenka Da se znaat relaciite pome|u P, V, T, i n. Da se znaat edinicite za Pritisok Volumen, Temperatura. Da se znae kako da se upotrebi na primer ravenkata za idealna gasna sostojba Za presmetuvawe na molarnata masa od nekoj gas. Da se znae ravenkata za molaren volumen na idealni gasovi.