CE 3372 Water Systems Design

Slides:



Advertisements
Similar presentations
CHE Pumps and gas moving equipment  For the fluid flow from point to another, a driving force is needed.  The driving force may be supplied by.
Advertisements

Pumps and Pumping Stations
Pumps, Compressors, Fans, Ejectors and Expanders
PUMPS AND GAS-MOVING EQUIPMENT
CE 3372 Water Systems Design
Basics of Pump Vigyan Ashram, Pabal.
Our Plan – Weeks 6 and 7 Review energy relationships in single pipes Extend analysis to progressively more complex systems – Pipes in parallel or series.
Advanced Pump Fundamentals Agenda
CE 3372 Water Systems Design
Water Pumps turbo-hydraulic pumps, positive-displacement pumps.
TURBINES.
PUMPS, VALVES, & FANS …Moving fluids Objectives Comprehend the basic construction and application of valves used Comprehend the basic construction and.
Pumping Plants. Types of Pumps Positive displacement pumps – Rotary (gear, screw, etc.) – Reciprocating (piston, diaphragm, etc.) – Used as injection.
The Centrifugal Pump.
Lesson 26 CENTRIFUGAL PUMPS
Week 1 Unit Conversions Mass and Volume Flow Ideal Gas Newtonian Fluids, Reynolds No. Week 2 Pressure Loss in Pipe Flow Pressure Loss Examples Flow Measurement.
Water Pumps.
MER Design of Thermal Fluid Systems Pumps and Fans Professor Anderson Spring Term
Conservation of Mass, Flow Rates
Components of Centrifugal pumps
CE 3372 Water Systems Design
Week 1 Unit Conversions Conservation of Mass Ideal Gas Newtonian Fluids, Reynolds No. Pressure Loss in Pipe Flow Week 2 Pressure Loss Examples Flow Measurement.
So Far: Mass and Volume Flow Rates Reynolds No., Laminar/Turbulent Pressure Drop in Pipes Flow Measurement, Valves Total Head, Pump Power, NPSH This Week:
Pumps and Lift Stations. Background Fluid Moving Equipment Fluids are moved through flow systems using pumps, fans, blowers, and compressors. Such devices.
PUMPS, VALVES, & FANS …Moving fluids Objectives Comprehend the basic construction and application of valves used Comprehend the basic construction and.
Metso - Slurry Pumping.
Urban Storm Drain Design: Pump Station Design. Purposes To lift stormwater to higher elevation when discharge of local collection system lies below regional.
General Energy Equation. Chapter Objectives Identify the conditions under which energy losses occur in fluid flow systems. Identify the means by which.
PRESENTED BY : N.SRIKAUSIGARAMAN
Parul Institute of Engineering & Technology Subject Code : Name Of Subject : Fluid Power Engineering Name of Unit : Pumps Topic : Reciprocating.
So Far: Mass and Volume Flow Rates Reynolds No., Laminar/Turbulent Pressure Drop in Pipes Flow Measurement, Valves Total Head, Pump Power, NPSH This Week:
Urban Storm Drain Design: Multiple Pumps. Multiple Pumps The HDM and FHWA recommend more than one pump Redundancy Flexibility Ability to manage flows.
Urban Storm Drain Design: Pump Performance Curves.
1 CEE 426 Wastewater Treatment Plant Design November 12, 2012 Thomas E. Jenkins President JenTech Inc N. Elm Tree Road Milwaukee, WI
Week 1 Unit Conversions Conservation of Mass Ideal Gas Newtonian Fluids, Reynolds No. Pressure Loss in Pipe Flow Week 2 Pressure Loss Examples Flow Measurement.
Introduction to Energy Management
CE 3372 Water Systems Design
CE 3372 Water Systems Design
Parul Institute of Technology
FLUID FLOW FOR CHEMICAL ENGINEERING Dr Mohd Azmier Ahmad Tel: +60 (4) EKC 212 CHAPTER 8 (Part 5) TRANSPORTATION SYSTEM.
Prepared By Rohit G. Sorte M.Tech
A.D PATEL INST OF TECH. NAME : SETA BHAUMIK D. ( ) TOPIC : CENTRIFUGAL PUMPS FACULTY : BHAUMIK SHETH.
SUDHIR REDDY S.V.R M.TECH(CAD/CAM)
Chapter 10: Flows, Pumps, and Piping Design
Fluid Mechanics for Chemical Engineers Arif Hussain (Lecturer)
PUMPS Thermal Systems Laboratory Samuel A. Santiago Pérez Modesto González David Alvarado.
System One Pumps S1-200 Centrifugal Hydraulics
CENTIFUGAL PUMP OPERATION
RECIPROCATING MACHINES
Components Pumps.
CE 3372 Lecture07-Review.
Fluid Mechanics: All About Water Pumps
pumps Principle of operation of a pump: Classifications of pumps:
Pumps Outline: Where are pumps used
Process Equipment Design and Heuristics - Pumps
PUMPS The Goals Describe how centrifugal and positive-displacement pumps operate and common applications. Calculate system head requirements. Determine.
ME444 ENGINEERING PIPING SYSTEM DESIGN
CE 356 Elements of Hydraulic Engineering
Pumps and Lift Stations
Review from Lecture 1: Pumps
BAE4400 Topics in Processing
Review from Lecture 1: Pumps
Review from Lecture 1: Pumps
Performance Curves Dr. C. L. Jones Biosystems and Ag. Engineering.
4.6 Cavitation Since NPSHav. is the absolute pressure available less the vapor pressure of the liquid, the NPSHav. should always be greater than the NPSHreq.
Pumps and pumping station
Presented By: Vinod Dahiya Lecturer Mechanical Engg. RGGP Narwana.
Introduction to Fluid Mechanics
Hydraulic Pump Power Power = rate of conversion of energy.
PUMPS AND DRIVERS NCCER
Presentation transcript:

CE 3372 Water Systems Design Lecture 06 – Pumps and Lift Stations

Overview Pumps Description Suction Requirements System and Pump Curves

Pumps

Pumps A mechanical device that transfers mechanical energy to move fluid Lift from lower to higher elevation Lift stations Increase pressure Booster stations

Pumps Positive Displacement Pumps Fixed volume of fluid is displaced each cycle regardless of static head/pressure Lower flow rates and higher head than non-positive pumps Non-Positive Displacement Pumps (Centrifugal Pumps) Volume of fluid is dependent on static head/pressure in system (back pressure) 2 principle types of plants

Pumps Positive Displacement Pumps Non-Positive Displacement Pumps Screw Pumps Reciprocating Pumps Non-Positive Displacement Pumps Centrifugal (Radial-Flow) Pumps Propeller Pumps (Axial-Flow) Jet Pumps (Mixed-Flow) 2 principle types of plants

Positive Displacement Pumps Screw Pump A revolving shaft with blades rotates in a trough at an incline and pushes water up The auger catches a portion of water and lift it as the pump screw rotates. The diameter, fill depth, pump angle, etc are determinants of pump charact. Commonly used in wastewater lifting and hurricane barrier lifting Very tolerant of debris in liquid. Failure is HUGE

Positive Displacement Pumps Reciprocating Pump A piston sucks the fluid into a cylinder and then pushes it out Upstroke, chamber fills. Downstroke, liquid is pushed out Check valves prevent back flow. Bore diameter, stroke length and rate are principal det of the operating character of a piston pump. If no flow can occur, discharge is blocked, piston pump can and will destroy !!

Pumps Positive Displacement Pumps Non-Positive Displacement Pumps Screw Pumps Reciprocating Pumps Non-Positive Displacement Pumps Centrifugal (Radial-Flow) Pumps Propeller Pumps (Axial-Flow) Jet Pumps (Mixed-Flow) 2 principle types of plants

Non-Positive Displacement Pumps Classification is based on the way water leaves the rotating part of the pump Radial-flow pump – water leaves impeller in radial direction Axial-flow pump – water leaves propeller in the axial direction Mixed-flow pump – water leaves impeller in an inclined direction (has both radial and axial components) Propeller creates thrust Impeller creates suction

Radial-Flow Pumps Centrifugal Pump Accelerates water using an impeller https://www.youtube.com/watch?v=BaEHVpKc-1Q https://www.youtube.com/watch?feature=player_detailpage&v=ECv1Vw W6RTo#t=122 Play til 3:11 Rate of impeller is how much momentum it can transfer to the water Conversion of rotational kinetic energy to hydrodynamic energy of fluid flow Cent pump can be submersible wet or dry Discharge Suction (Eye)

Axial Flow Pumps Axial flow pumps have impellers whose axis of rotation is collinear with the discharge Used in high flow, low head applications discharge Moving the same axis the fan rotates on. Collinear enough. Perpendicular to blade suction

Suction Requirements

Suction Requirements The most common cause of pumping failure is poor suction conditions Cavitation occurs when liquid pressure is reduced to the vapor pressure of the liquid For piping system with a pump, cavitation occurs when Pabs at the inflow falls below the vapor pressure of the water They implode in such a great force and high heat and causes a lot of damage to pump Reduce pump and impeller capacity

Suction Requirements Liquid must enter the pump eye under pressure; this pressure is called the Net Positive Suction Head available (NPSHa). A centrifugal pump cannot lift water unless it is primed the first stage impellers must be located below the static HGL in the suction pit at pump start-up They implode in such a great force and high heat and causes a lot of damage

Suction Requirements The manufacturer supplies a value for the minimum pressure the pump needs to operate. This pressure is the Net Positive Suction Head required (NPSHr). For proper pump operation (w/o cavitation) NPSHa> NPSHr Draw NPSH example. Required is by manufacturer NPSHr must be maintained or exceeded!! over all operating conditions, including start-up and shut-down.

Suction Requirements Available suction is computed from Absolute vapor pressure at liquid pumping temperature Frictional head loss in inlet piping VP cause of temperature NPSH is pressure req at the suction of a pump to prevent cavitation hs (static suction head): it is the difference in elevation between the suction liquid level and the centerline of the pump impeller. Static elevation of the liquid above the pump inlet eye Absolute pressure at liquid surface in suction pit

Suction Requirements Example MSL = mean sea level Air pressure drops as you go up. 33.9 pressure = 1 atm water at standard 14.7 psi will hold up 33 feet of water. (12.7/14.7psi) is a ratio 85% real big thunderstorm. Atm is 85% of normal

Suction Requirements Example

Suction Requirements Example

Suction Requirements Example

Suction Requirements Example

System and Pump Curves

Selecting Pumps Design conditions are specified Pump is selected for the range of applications A System Curve (H vs. Q) is prepared System Curve is matched to Pump Curve Matching point (Operating point) indicates the actual working conditions Range of app (like needing to pump 120 MGPM)

System Curves A system (characteristic) curve is a plot of required head versus flow rate in a hydraulic system (H vs. Q) The curve depicts how much energy is necessary to maintain a steady flow under the supplied conditions Total head, Hp, = elevation head + head losses System curve.. How much energy does it take to meet the needs of your system

System Curves The amount of head the pump must add to overcome elevation differences is dependent on system characteristics and topology (and independent of the pump discharge rate), and is referred to as static head or static lift. Friction and minor losses, however, are highly dependent on the rate of discharge through the pump. When these losses are added to the static head for a series of discharge rates, the resulting plot is called a system head curve". Apply the energy equation and incorporate various friction components

System Curves This relationship tells us that the added head has to be at least 30 meters just to keep the reservoirs at the two levels shown, if any flow is to occur the pump must supply more than 30 meters of head.

Pump Curves Provided information from the manufacturer on the performance of pumps in the form of curves. Information may include: discharge on the x-axis head on the left y-axis pump power input on the right y-axis pump efficiency as a percentage speed of the pump (rpm) NPSH of the pump Wire- ratio of electrical energy in to water energy out Added head versus discharge. Wire-to-water efficiency versus discharge. Mechanical power versus discharge. Net Positive Suction Head required versus discharge. the discharge on the x-axis, the head on the left y-axis, the pump power input on the right y-axis, the pump efficiency as a percentage, the speed of the pump (rpm = revolutions/min). the NPSH of the pump.

Pump Curves Provided d. Always read based on diameter of impeller, at a flow of _, head is NPSH = total head on suction side Amount req + amount available Total dynamic head: Head = Energy per unit weight of water Energy = Kinetic + Potential =velocity + (elevation + pressure) the discharge on the x-axis, the head on the left y-axis, the pump power input on the right y-axis, the pump efficiency as a percentage, the speed of the pump (rpm = revolutions/min). the NPSH of the pump.

How to Provided information from the manufacturer on the performance of pumps in the form of curves. Information may include: discharge on the x-axis head on the left y-axis pump power input on the right y-axis pump efficiency as a percentage speed of the pump (rpm) NPSH of the pump Wire- ratio of electrical energy in to water energy out Added head versus discharge. Wire-to-water efficiency versus discharge. Mechanical power versus discharge. Net Positive Suction Head required versus discharge. the discharge on the x-axis, the head on the left y-axis, the pump power input on the right y-axis, the pump efficiency as a percentage, the speed of the pump (rpm = revolutions/min). the NPSH of the pump.

Pump Curves Pump A cannot meet the needs of the system at any flow rate Pump B supplies enough head over part of the system curve The shaded area is the area where the pump supplies excess head Operating Point System curve and pump curve are VERY important help select an appropriate pump or set of pumps. System curve is how much head the SYSTEM needs to function Pump curve is how much head the PUMP needs to function Plot of pump curve and system curve Can use a valve to throttle the system curve So monster.. Head is pizzas (pizza becomes energy after you digest) Poop factory with monsters Pump Curve, you have Monster A and B (2 different people) who work together, based on pizzas Monster B functions on pizzas at this rate and produces poop And Monster A (system curve) also functions on pizzas at a different rate and produces poop So if you feed them both the same, they produce the same.

Look at the efficiency. Pump is most efficient then

Multiple Pumps Series and parallel combinations can be used to adjust “pump curves” to fit system requirements. Parallel pumps add flow for given head Series pumps add head for given flow

For pumps in parallel, the curve of two pumps, for example, is produced by adding the discharges of the two pumps at the same head (assuming identical pumps).

H 3H1 Three pumps in series H1 2H1 Two pumps in series H1 H1 For pumps in series, the curve of two pumps, for example, is produced by adding the heads of the two pumps at the same discharge. Single pump H1 Q Q1

Lift Stations!

Lift Stations Lift wastewater/stormwater to higher elevations when: discharge of local collection system lies below regional conveyance terrain or man-made obstacles do not permit gravity flow to discharge point.

Pond and Pump Station

Types of Lift Stations Submersible Wet-well / dry-well Lower initial cost Lower capacity Smaller footprint Wet-well / dry-well Higher initial cost Easier inspection/ maintenance

Submersible lift station

Wet-well / dry-well lift station

Design criteria Size the pumps and the wet-well (sump) storage capacity to accommodate inflow variability and detention time limits. Match the pumps to the flow and head requirements. Provide ‘near-absolute’ reliability Automated controls Redundant systems Alarms Regularly scheduled, preventive maintenance Assess and mitigate environmental factors Flood risk, noise pollution, visibility

Site plan and facilities Protected and accessible during a major flood Redundant power supplies Intruder-resistant with controlled access

Readings (on server)