دکتر حسين بلندي- دکتر سید مجید اسما عیل زاده

Slides:



Advertisements
Similar presentations
Stability Margins Professor Walter W. Olson
Advertisements

Nyquist (2) Hany Ferdinando Dept. of Electrical Engineering Petra Christian University.
Nyquist Stability Criterion
Frequency Response Techniques
1 سیستمهای کنترل خطی پاییز 1389 بسم ا... الرحمن الرحيم دکتر حسين بلندي - دکتر سید مجید اسما عیل زاده.
سیستمهای کنترل خطی پاییز 1389 بسم ا... الرحمن الرحيم دکتر حسين بلندي - دکتر سید مجید اسما عیل زاده.
Analysis of SISO Control Loops
Frequency Response Methods and Stability
سیستمهای کنترل خطی پاییز 1389 بسم ا... الرحمن الرحيم دکتر حسين بلندي - دکتر سید مجید اسما عیل زاده.
Professor Walter W. Olson Department of Mechanical, Industrial and Manufacturing Engineering University of Toledo Loop Transfer Function Real Imaginary.
سیستمهای کنترل خطی پاییز 1389 بسم ا... الرحمن الرحيم دکتر حسين بلندي - دکتر سید مجید اسما عیل زاده.
سیستمهای کنترل خطی پاییز 1389 بسم ا... الرحمن الرحيم دکتر حسين بلندي - دکتر سید مجید اسما عیل زاده.
ابزار دقیق بسم ا... الرحمن الرحيم دکتر سید مجید اسما عیل زاده زمستان 1389.
ابزار دقیق بسم ا... الرحمن الرحيم دکتر سید مجید اسما عیل زاده زمستان 1389.
سیستمهای کنترل خطی پاییز 1389 بسم ا... الرحمن الرحيم دکتر حسين بلندي - دکتر سید مجید اسما عیل زاده.
سیستمهای کنترل خطی پاییز 1389 بسم ا... الرحمن الرحيم دکتر حسين بلندي- دکتر سید مجید اسما عیل زاده.
Automatic Control Theory School of Automation NWPU Teaching Group of Automatic Control Theory.
ابزار دقیق بسم ا... الرحمن الرحيم دکتر سید مجید اسما عیل زاده زمستان 1389.
INC 341PT & BP INC341 Frequency Response Method (continue) Lecture 12.
Frequency Response OBJECTIVE - Bode and Nyquist plots for control analysis - Determination of transfer function - Gain and Phase margins - Stability in.
F REQUENCY -D OMAIN A NALYSIS AND STABILITY DETERMINATION.
سیستمهای کنترل خطی پاییز 1389 بسم ا... الرحمن الرحيم دکتر حسين بلندي - دکتر سید مجید اسما عیل زاده.
سیستمهای کنترل خطی پاییز 1389 بسم ا... الرحمن الرحيم دکتر حسين بلندي - دکتر سید مجید اسما عیل زاده.
سیستمهای کنترل خطی پاییز 1389 بسم ا... الرحمن الرحيم دکتر حسين بلندي - دکتر سید مجید اسما عیل زاده.
Chapter 10 Frequency Response Techniques Frequency Response Techniques.
سیستمهای کنترل خطی پاییز 1389 بسم ا... الرحمن الرحيم دکتر حسين بلندي- دکتر سید مجید اسما عیل زاده.
Lecture 9 Feedback Control Systems President UniversityErwin SitompulFCS 9/1 Dr.-Ing. Erwin Sitompul President University
سیستمهای کنترل خطی پاییز 1389 بسم ا... الرحمن الرحيم دکتر حسين بلندي - دکتر سید مجید اسما عیل زاده.
Margins on Bode plot. Margins on Nyquist plot Suppose: Draw Nyquist plot G(jω) & unit circle They intersect at point A Nyquist plot cross neg. real axis.
Relative stability from margins If there is one wgc, and multiple wpc’s And if system is minimum phase (all zeros in left half plane) And if gain plot.
Lecture 10 Feedback Control Systems President UniversityErwin SitompulFCS 10/1 Dr.-Ing. Erwin Sitompul President University
سیستمهای کنترل خطی پاییز 1389 بسم ا... الرحمن الرحيم دکتر حسين بلندي- دکتر سید مجید اسما عیل زاده.
1 Chapter 9 Mapping Contours in the s-plane The Nyquist Criterion Relative Stability Gain Margin and Phase Margin PID Controllers in the Frequency Domain.
General Stability Criterion Most industrial processes are stable without feedback control. Thus, they are said to be open-loop stable or self-regulating.
Part B – Effect of Feedback on BW
Nyguist criterion Assist. Professor. Dr. Mohammed Abdulrazzaq.
Chapter 5 Root Locus.
Digital and Non-Linear Control
دکتر حسين بلندي- دکتر سید مجید اسما عیل زاده
ME190L Nyquist Stability Criterion UC Berkeley Fall
دکتر سید مجید اسما عیل زاده
Frequency-Domain Analysis and stability determination
Part B – Effect of Feedback on BW
Stability from Nyquist plot
UNIT-III STABILITY ANALYSIS.
Frequency-Domain of Control Systems
Methods of Determining Stability
Modern Control Engineering
Root-Locus Analysis (1)
System type, steady state tracking, & Bode plot
Digital Control Systems (DCS)
Feedback Control Systems (FCS)
Nyquist Stability Criterion
Frequency Response Techniques
Feedback Control Systems (FCS)
دکتر سید مجید اسما عیل زاده
System type, steady state tracking
Nyquist Stability Criterion
Chapter 6 – The Stability of Linear Feedback Systems
Margins on Bode plots G(s) + -.
Stability of Closed-Loop Control Systems
دکتر سید مجید اسما عیل زاده
Figure Contributions of characteristic equation roots to closed-loop response.
Root Locus Techniques CH 8: Islamic University of Gaza
Feedback Control Systems (FCS)
Frequency Domain specifications.
7-5 Relative Stability.
Root Locus Techniques CH 8: Islamic University of Gaza
Loop Transfer Function
Methods of Determining Stability
Presentation transcript:

دکتر حسين بلندي- دکتر سید مجید اسما عیل زاده بسم ا... الرحمن الرحيم سیستمهای کنترل خطی پاییز 1389 دکتر حسين بلندي- دکتر سید مجید اسما عیل زاده

The Nyquist-criterion A method to investigate the stability of a system in terms of the open-loop frequency response. The argument principle(Cauchy’s theorem) Assume: Make : Note: si→ the zeros of the F(s), also the roots of the 1+G(s)H(s)=0

The argument principle Now we consider the net phase shift if s travels 360o along a closed path Γ of the s-plane in the clockwise direction shown S-plane Im Re Similarly we have:

The argument principle If Z zeros and P poles are enclosed by Γ , then: It is obvious that path Γ can not pass through any zeros si or poles pj . Then we have the argument principle: If a closed path Γ in the s-plane encircles Z zeros and P poles of F(s) and does not pass through any poles or zeros of F(s) , when s travels along the contour Γ in the clockwise direction, the corres- ponding F(s) locus mapped in the F(s)-plane will encircle the origin of the F(s) plane N = P-Z times in the counterclockwise direction, that is: N = P - Z

The argument principle here: N —— number of the F(s) locus encircling the origin of the F(s)-plane in the counterclockwise direction. Z —— number of the zeros of the F(s) encircled by the path Γ in the s-plane. P—— number of the poles of the F(s) encircled by the path Nyquist criterion Re Im S-plane If we choose the closed path Γ so that the Γ encircles the entire right hand of the s-plane but not pass through any zeros or poles of F(s) shown The path Γ is called the Nyquist-path.

When s travels along the the Nyquist-path: Nyquist criterion Im S-plane When s travels along the the Nyquist-path: Re Because the origin of the F(s)-plane is equivalent to the point (-1, j0) of the G(jω)H(jω)-plane, we have another statement of the argument principle: When ω vary from - (or 0) →+  , G(jω)H(jω) Locus mapped in the G(jω)H(jω)-plane will encircle the point (-1, j0) in the counterclockwise direction: here: P — the number of the poles of G(s)H(s) in the right hand of the s-plane. Z — the number of the zeros of F(s) in the right hand of the s-plane.

Nyquist-criterion If the systems are stable, should be Z = 0, then we have: The sufficient and necessary condition of the stability of the linear systems is : When ω vary from - (or 0) →+  , the G(jω)H(jω) Locus mapped in the G(jω)H(jω)-plane will encircle the point (-1, j0) as P (or P/2) times in the counterclockwise direction. ——Nyquist criterion Here: P — the number of the poles of G(s)H(s) in the right hand of the s-plane. Discussion : i) If the open loop systems are stable, that is P = 0, then: for the stable open-loop systems, The sufficient and necessary condition of the stability of the closed-loop systems is : When ω vary from - (or 0) →+  , the G(jω)H(jω) locus mapped in the G(jω)H(jω)-plane will not encircle the point (-1, j0).

Nyquist-criterion ii) Because that the G(jω)H(jω) locus encircles the point (-1, j0) means that the G(jω)H(jω) locus traverse the left real axis of the point (-1, j0) , we make: G(jω)H(jω) Locus traverses the left real axis of the point (-1, j0) in the counterclockwise direction —“positive traversing”. G(jω)H(jω) Locus traverses the left real axis of the point (-1, j0) in the clockwise direction —“negative traversing”. Then we have another statement of the Nyquist criterion: The sufficient and necessary condition of the stability of the linear systems is : When ω vary from - (or 0) →+  , the number of the net “positive traversing” is P (or P/2). Here: the net “positive traversing” —— the difference between the number of the “positive traversing” and the number of the “negative traversing” .

Nyquist-criterion Example : The polar plots of the open loop systems are shown in, determine whether the systems are stable. Re Im (-1, j0) (2) P=0 Re Im (-1, j0) (1) P=2 stable stable Re Im (-1, j0) (4) P=0 Re Im (-1, j0) (3) P=2 unstable unstable