Download presentation

1
**Stability Margins Professor Walter W. Olson**

Department of Mechanical, Industrial and Manufacturing Engineering University of Toledo Stability Margins

2
**Outline of Today’s Lecture**

Review Open Loop System Nyquist Plot Simple Nyquist Theorem Nyquist Gain Scaling Conditional Stability Full Nyquist Theorem Is stability enough? Margins from Nyquist Plots Margins from Bode Plot Non Minimum Phase Systems

3
**Loop Nomenclature Disturbance/Noise Reference Error Input signal**

+ - Output y(s) Error signal E(s) Open Loop Signal B(s) Plant G(s) Sensor H(s) Prefilter F(s) Controller C(s) Disturbance/Noise Reference Input R(s) The plant is that which is to be controlled with transfer function G(s) The prefilter and the controller define the control laws of the system. The open loop signal is the signal that results from the actions of the prefilter, the controller, the plant and the sensor and has the transfer function F(s)C(s)G(s)H(s) The closed loop signal is the output of the system and has the transfer function

4
**Open Loop System Error signal Input Output E(s) r(s) y(s) Controller**

Note: Your book uses L(s) rather than B(s) To avoid confusion with the Laplace transform, I will use B(s) Open Loop System Error signal E(s) Input r(s) Output y(s) Controller C(s) Plant P(s) + Open Loop Signal B(s) Sensor -1

5
**Simple Nyquist Theorem**

Error signal E(s) + Output y(s) Open Loop Signal B(s) Plant P(s) Controller C(s) Input r(s) Sensor -1 -1 Real Imaginary Plane of the Open Loop Transfer Function B(0) B(iw) -1 is called the critical point Stable Unstable -B(iw) Simple Nyquist Theorem: For the loop transfer function, B(iw), if B(iw) has no poles in the right hand side, expect for simple poles on the imaginary axis, then the system is stable if there are no encirclements of the critical point -1.

6
Nyquist Gain Scaling The form of the Nyquist plot is scaled by the system gain

7
Conditional Stabilty Whlie most system increase stability by decreasing gain, some can be stabilized by increasing gain Show with Sisotool

8
Definition of Stable A system described the solution (the response) is stable if that system’s response stay arbitrarily near some value, a, for all of time greater than some value, tf.

9
Full Nyquist Theorem Assume that the transfer function B(iw) with P poles has been plotted as a Nyquist plot. Let N be the number of clockwise encirclements of -1 by B(iw) minus the counterclockwise encirclements of -1 by B(iw)Then the closed loop system has Z=N+P poles in the right half plane.

10
**Determination of Stability from Eigenvalues**

Continuous Time Discrete Time Unstable Stable Asymptotic Stability

11
Is Stability Enough? If not Why Not?

12
Margins Margins are the range from the current system design to the edge of instability. We will determine Gain Margin How much can gain be increased? Formally: the smallest multiple amount the gain can be increased before the closed loop response is unstable. Phase Margin How much further can the phase be shifted? Formally: the smallest amount the phase can be increased before the closed loop response is unstable. Stability Margin How far is the the system from the critical point?

13
**Gain and Phase Margin Definition Nyquist Plot**

-1

14
Example Using Matlab command nyquist(gs)

15
**Example Here the gain from the previous plot has been**

multiplied by The result is that stability is about to be lost

16
Example Using Matlab command nyquist(gs)

17
**Gain and Phase Margin Definition Bode Plots**

Magnitude, dB Positive Gain Margin w Phase, deg -180 Phase Margin w Phase Crossover Frequency

18
Example Using Matlab command bode(gs)

19
Example Again, stability is about to be lost.

20
Example Using Matlab command bode(gs)

21
Note The book does not plot the Magnitude of the Bode Plot in decibels. Therefore, you will get different results than the book where decibels are required. Matlab uses decibels where needed.

22
Stability Margin It is possible for a system to have relatively large gain and phase margins, yet be relatively unstable. Stability margin, sm

23
**Non-Minimum Phase Systems**

Non minimum phase systems are those systems which have poles on the right hand side of the plane: they have positive real parts. This terminology comes from a phase shift with sinusoidal inputs Consider the transfer functions The magnitude plots of a Bode diagram are exactly the same but the phase has a major difference:

24
**Another Non Minimum Phase System A Delay**

Delays are modeled by the function which multiplies the T.F.

25
**Summary Is stability enough? Margins from Nyquist Plots**

Margins from Bode Plot Non Minimum Phase Systems Next Class: PID Controls

Similar presentations

Presentation is loading. Please wait....

OK

Analysis of SISO Control Loops

Analysis of SISO Control Loops

© 2018 SlidePlayer.com Inc.

All rights reserved.

By using this website, you agree with our use of **cookies** to functioning of the site. More info in our Privacy Policy and Google Privacy & Terms.

Ads by Google

Renal anatomy and physiology ppt on cells Ppt on e-sales order processing system Ppt on national stock exchange Ppt on astronomy and astrophysics courses Ppt on question tags worksheet Ppt on forward contract merchant Ppt on non ferrous minerals Ppt on op amp circuits diagrams Ppt on phonetic transcription exercises Primary flight display ppt on tv