‘Tc’ ~ 70 K: Fe-Based SC 200 Tc (K) year

Slides:



Advertisements
Similar presentations
Progress in the study of high T c electron doped Ca 10 (Pt 3 As 8 )(Fe 2 As 2 ) 5 and Ca 10 (Pt 4 As 8 )(Fe 2 As 2 ) 5 superconductors Ni University of.
Advertisements

Inhomogeneous Superconductivity in the Heavy Fermion CeRhIn 5 Tuson Park Department of Physics, Sungkyunkwan University, Suwon , South Korea IOP.
A new class of high temperature superconductors: “Iron pnictides” Belén Valenzuela Instituto de Ciencias Materiales de Madrid (ICMM-CSIC) In collaboration.
Iron pnictides: correlated multiorbital systems Belén Valenzuela Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) ATOMS 2014, Bariloche Maria José.
Space group symmetry, spin-orbit coupling and the low energy effective Hamiltonian for iron based superconductors (arXiv: ) Vladimir Cvetkovic.
Spintronics with topological insulator Takehito Yokoyama, Yukio Tanaka *, and Naoto Nagaosa Department of Applied Physics, University of Tokyo, Japan *
Quasi-vdW epitaxy of GaAs on Si Darshana Wickramaratne 1, Y. Alaskar 2,3, S. Arafin 2, A. G. Norman 4, Jin Zou 5, Z. Zhang 5, K.L Wang 2, R. K. Lake 1.
Iron pnictides are layered Iron pnictides are layered materials characterized by Pnictogen (Pn)-Fe layers, Pn=As,P. Fe-Pn bonds form an angle  with the.
Kitaoka lab. Takayoshi SHIOTA M1 colloquium N. Fujiwara et al., Phys. Rev. Lett. 111, (2013) K. Suzuki et al., Phys. Rev. Lett. 113, (2014)
BiS 2 compounds: Properties, effective low- energy models and RPA results George Martins (Oakland University) Adriana Moreo (Oak Ridge and Univ. Tennessee)
The new iron-based superconductor Hao Hu The University of Tennessee Department of Physics and Astronomy, Knoxville Course: Advanced Solid State Physics.
Perovskite-type transition metal oxide interfaces
Status of TI Materials. Not continuously deformable Topological Invariant Topology & Topological Invariant Number of Holes Manifold of wave functions.
Introduction SiC substrate Process Expitaxial graphene on Si – face Expitaxial graphene on C – face Summary Graphene synthesis on SiC.
Highlights on Some Experimental Progress of FeSe Xingjiang ZHOU 2014/10/08.
Materials-286K 15 th December, 2014 Correlations between structure and transport in BaTiO 3 Santosh Raghavan Materials Department, University of California,
Magnetic Tunnel Junctions. Transfer Hamiltonian Tunneling Magnetoresistance.
The electronic structures of 2D atomically uniform thin film S.- J. Tang, T. Miller, and T.-C. Chiang Department of Physics, University of Illinois at.
Optics on Graphene. Gate-Variable Optical Transitions in Graphene Feng Wang, Yuanbo Zhang, Chuanshan Tian, Caglar Girit, Alex Zettl, Michael Crommie,
UCSD. Tailoring spin interactions in artificial structures Joaquín Fernández-Rossier Work supported by and Spanish Ministry of Education.
Tanaka Lab. Yasushi Fujiwara Three dimensional patterned MgO substrates ~ fabrication of FZO nanowire structure~
Magnetoelastic Coupling and Domain Reconstruction in La 0.7 Sr 0.3 MnO 3 Thin Films Epitaxially Grown on SrTiO 3 D. A. Mota IFIMUP and IN-Institute of.
The Schrödinger Model and the Periodic Table. Elementnℓms H He Li Be B C N O F Ne.
Microscopic nematicity in iron superconductors Belén Valenzuela Instituto de Ciencias Materiales de Madrid (ICMM-CSIC) In collaboration with: Laura Fanfarillo.
Page 1 Band Edge Electroluminescence from N + -Implanted Bulk ZnO Hung-Ta Wang 1, Fan Ren 1, Byoung S. Kang 1, Jau-Jiun Chen 1, Travis Anderson 1, Soohwan.
Basic Electronics By Asst Professor : Dhruba Shankar Ray For B.Sc. Electronics Ist Year 1.
Please do not write on this document. Thank you. Atomic Radius Data Element Name Atomic Number Atomic Radius (pm) Height of Straws (cm) H He
Transport experiments on topological insulators J. Checkelsky, Dongxia Qu, Qiucen Zhang, Y. S. Hor, R. J. Cava, NPO 1.Magneto-fingerprint in Ca-doped Bi2Se3.
December 2, 2011Ph.D. Thesis Presentation First principles simulations of nanoelectronic devices Jesse Maassen (Supervisor : Prof. Hong Guo) Department.
Pengcheng Dai The University of Tennessee (UT) Institute of Physics, Chinese Academy of Sciences (IOP) Evolution of spin excitations.
Superconductivity in electron-doped C 60 crystals 電子ドープされたフラーレン結晶 における超伝導 Kusakabe Lab Kei Kawashima.
Fe As Nodal superconducting gap structure in superconductor BaFe 2 (As 0.7 P 0.3 ) 2 M-colloquium5 th October, 2011 Dulguun Tsendsuren Kitaoka Lab. Division.
An Introduction to Fe-based superconductors
Quantum Confinement in Nanostructures Confined in: 1 Direction: Quantum well (thin film) Two-dimensional electrons 2 Directions: Quantum wire One-dimensional.
Introduction to Mineralogy Dr. Tark Hamilton Chapter 3: Lecture 7 The Chemical Basis of Minerals (sizes, shapes & directions) Camosun College GEOS 250.
Fe As A = Ca, Sr, Ba Superconductivity in system AFe 2 (As 1-x P x ) 2 Dulguun Tsendsuren Kitaoka Lab. Division of Frontier Materials Sc. Department of.
Electric-field Effect on Transition Properties in a Strongly Correlated Electron (La,Pr,Ca)MnO 3 Film Electric Double Layer Transistor Source Drain Gate.
Sangita Bose, Bombay Antonio Bianconi, Rome Welcome !!! A. Garcia-Garcia, Cambridge.
High pressure study on superconductor K x Fe 2-y Se 2 M1 Hidenori Fujita Shimizu group.
Superconductivity and magnetism in iron-based superconductor
ARPES studies of unconventional
Magnetism of the regular and excess iron in Fe1+xTe
Pengcheng Dai The University of Tennessee (UT) Institute of Physics, Chinese Academy of Sciences (IOP) Evolution of spin excitations.
1 4.1 Introduction to CASTEP (1)  CASTEP is a state-of-the-art quantum mechanics-based program designed specifically for solid-state materials science.
Search for New Topological Insulator Materials April 14, 2011 at NTNU Hsin Lin Northeastern University.
R. Nourafkan, G. Kotliar, A.-M.S. Tremblay
ARPES studies of cuprates
Tunable excitons in gated graphene systems
Quest for Higher Tc or RTS
Antonio M. García-García Cavendish Laboratory, Cambridge University
Search for Novel Quantum Phases in
Phase diagram of FeSe by nematic ultrafast dynamics
Structural hierarchy as a key to complex phase selection
Evidence for fully gapped superconductivity from microwave penetration depth measurements in PrFeAsO1-y single crystals K. Hashimoto1, T. Shibauchi1,
Minimal Model for Study on Superconductivity
MIT Amorphous Materials 10: Electrical and Transport Properties
Superconductivity Res. T
UC Davis conference on electronic structure, June. 2009
151Eu AND 57Fe MÖSSBAUER STUDY OF Eu1-xCaxFe2As2
Rashba splitting of graphene on Ni, Au, or Ag(111) substrates
Adjustable magnetization in codoped topological insulator Bi2Se3
Optical signature of topological insulator
References La1111, 4.2 K, H//c and H//ab: M. Kidszun et al. Critical Current Scaling and Anisotropy in Oxypnictide Superconductors, Phys. Rev. Lett. 106,
Mössbauer study of BaFe2(As1-xPx)2 iron-based superconductors
Mössbauer study of BaFe2(As1-xPx)2 iron-based superconductors
Growth Behavior of Co on Al(001) substrate
Ionic liquid gating of VO2 with a hBN interfacial barrier
Annual Academic Conference of Dept. Physics, Fudan University (2016)
Neutron studies of iron-based superconductors
New Possibilities in Transition-metal oxide Heterostructures
Presentation transcript:

‘Tc’ ~ 70 K: Fe-Based SC 200 Tc (K) 100 1970 1980 1990 2000 2010 year 1UC FeSe on STO 100 ~ 70 K 55 K SmFeAsO 2012 LaFeAsO 2008 LaFePO 2006 1970 1980 1990 2000 2010 year

FeSe Monolayer on a SrTiO3 Substrate Tc = 65±5 K (100 K ?) Se Fe Se SrTiO3 I. Mazin, Nature Mater. 14, 755 (2015). Review Dung-Hai Lee, Chin. Phys. B 24, 117405 (2015).

FeSe Monolayer on a SrTiO3 Substrate Tc S. He, Q-K. Xue, X.J. Zhou et al., Nature Mater. 12, 605 (2013).

FeSe Monolayer on a SrTiO3 Substrate Tc Tc = 108 K ?? Science Bulletin 60 (14), 1301-1304 (2015) S. He, Q-K. Xue, X.J. Zhou et al., Nature Mater. 12, 605 (2013). Z. Zhang, D.-L. Feng, Yayu Wang et al., arXiv: 1507.00129 J.F. Ge, Q.K. Xue et al., Nature Mater. 14, 285 (2015).

Z. Zhang, K.A. Moler, D.L. Feng, Yayu Wang, arXiv: 1507.00129; Onset of Meissner effect in FeSe monolayer on Nb doped SrTiO3 substrate Z. Zhang, K.A. Moler, D.L. Feng, Yayu Wang, arXiv: 1507.00129; Science Bulletin 60 (14), 1301 (2015)

Low-energy mSR: Depth profile

Thickness dependence of Tc for FeSe films on STO 80 60 Tc (K) 40 electron doping applying pressure Y. Mizuguchi et al., Appl. Phys. Lett. 93, 152505 (2008). Medvedev et al., Nature Materials 8, 630 (2009). Margadonna et al., Phys. Rev. B 80, 064506 (2009). 20 1UC 2UC 3UC 4UC 50UC ∞UC FeSe Thickness

Pressure dependence of Tc for bulk FeSe J.P. Sun, T. Shibauchi et al., arXiv: 1512.06951; Nat. Commun. 7, 12146 (2016)

Thickness dependence of Tc for FeSe films on STO 80 60 Tc (K) 40 electron doping applying pressure Y. Mizuguchi et al., Appl. Phys. Lett. 93, 152505 (2008). Medvedev et al., Nature Materials 8, 630 (2009). Margadonna et al., Phys. Rev. B 80, 064506 (2009). 20 1UC 2UC 3UC 4UC 50UC ∞UC FeSe Thickness

Thickness dependence of Tc for FeSe films on STO 80 C. Tang, Q.-K. Xue et al., arXiv: 1509.08950; Phys. Rev. B92, 180507(R) (2015). 60 Y. Miyata, T. Takahashi et al., Nature Mater. 14, 775 (2015). Tc (K) C.H.P. Wen, D.-L. Feng et al., arXiv: 1508.05848; Nat. Commun. 7, 10840. 40 J. Shiogai et al., Nature Phys. 12, 42 (2016). 20 1UC 2UC 3UC 4UC 50UC ∞UC FeSe Thickness

SC of 2UC-FeSe (double-layer) on STO C. Tang, Q.-K. Xue et al., arXiv: 1509.08950; Phys. Rev. B92, 180507(R) (2015).

Electron Doping into FeSe Films on STO K deposition Electric field SrTiO3 MgO Y. Miyata et al., Nature Mater. 14, 775 (2015). J. Shiogai et al., Nature Phys. 12, 42 (2016).

Electron Doping into FeSe Films on STO K deposition Electric field Y. Miyata et al., Nature Mater. 14, 775 (2015). J. Shiogai et al., Nature Phys. 12, 42 (2016).

Electron Doping into FeSe Films on STO K deposition C.-L. Song, Q.-K. Xue et al., arXiv: 1511.02007; Phys. Rev. Lett. 116, 157001 (2016). Y. Miyata et al., Nature Mater. 14, 775 (2015).

Electron Doping into FeSe Films on STO I. Mazin, Nature Mater. 14, 755 (2015).

FeSe Monolayer on SrTiO3: Interface Effect (1) Tc = 65±5 K Se Fe Interface effects : Electron transfer (doping) from O vacancies in the STO surface layer (?) Doping/transfer is only to the bottom FeSe layer – Open question (?) Se SrTiO3 Se O O Dung-Hai Lee,Chin. Phys. B 24, 117405 (2015). Ti Ov Review O

Interface Atomic Structure: 1UC-FeSe on STO F. Li, Q.-K. Xue et al., arXiv: 1512.05203. (State Key Labo. of Low-Dimensional Quantum Physics, State Key Labo. of New Ceramics and Fine Processing, Tsinghua Univ.) Se O O Ti O OV Ti O O Sr TiO2-x

FeSe Monolayer on SrTiO3: Charge Transfer (?) Hao Ding, Q-K. Xue et al., arXiv: 1603.00999; Phys. Rev. Lett. 117, 067001 (2016). J. Shiogai et al., Nature Phys. 12, 42 (2016).

Enhanced Tc in Monolayer FeSe on STO 80 C. Tang, Q.-K. Xue et al., arXiv: 1509.08950; Phys. Rev. B92, 180507(R) (2015). 60 Y. Miyata, T. Takahashi et al., Nature Mater. 14, 775 (2015). Tc (K) C.H.P. Wen, D.-L. Feng et al., arXiv: 1508.05848; Nat. Commun. 7, 10840. 40 J. Shiogai et al., Nature Phys. 12, 42 (2016). 20 1UC 2UC 3UC 4UC 50UC ∞UC FeSe Thickness

FeSe Monolayer on a SrTiO3 Substrate Tc = 65±5 K Se Fe Interface effects : Electron transfer (doping) from O vacancies in STO (?) An additional pairing channel from a coupling with the bond-stretching O vibrations (W0 ~ 100 meV) in SrTiO3. Se SrTiO3 Se O O Dung-Hai Lee,Chin. Phys. B 24, 117405 (2015). Ti OV Review O

FeSe on STO: Interface Effect (2) Dung-Hai Lee, Chin. Phys. B 24, 117405 (2015).

Proposed 1UC FeSe-TiO Complex Dung-Hai Lee,Chin. Phys. B 24, 117405 (2015).

Enhanced Tc in Monolayer FeSe on STO 80 Tc = 60 K-class SC cannot be achieved by bulk and thicker films of FeSe. 60 Tc (K) 40 20 1UC 2UC 3UC 4UC 50UC ∞UC FeSe Thickness

Summary of Tc and Gap in Bulk, Doped, and Monolayer FeSe S.N. Rebec, Z.-X.. Shen et al., arXiv: 1606.09358.

Interface Atomic Structure: 1UC-FeSe on STO F. Li, Q.-K. Xue et al., arXiv: 1512.05203. aFeSe = 3.86 Å  (3.76 Å) hSe = 1.31±0.01 Å (1.45 Å ) dSe-Ti = 3.58 Å hSeopt = 1.38 Å a = 111.4°±0.9° (103.6°) a opt = 109.5° bulk FeSe

FeSe Monolayer on a SrTiO3 (110) Substrate

Small Electron Fermi Surface Pockets in FeSe L.P. Gor’kov, arXiv: 1510.03327; Phys. Rev. B 93, 060507 (2016).. B. Rosenstein et al., arXiv: 1601.07425. ● Validity of Migdal theorem - low EF The Fermi energy is small; EF ~ ħW0 EF ~ 60 meV ħW0 ~ 80-100 meV EF m* = m / [1 + m ln (EF/ħW0)]

s-Wave SC Gap in Monolayer FeSe on STO Q. Fan, D.-L. Feng et al., Nature Phys. 11, 946 (2015).

Exfoliated Monolayer Materials Anomalous charge transport

Exfoliated Monolayer Materials “Magnetic graphene” MPS3 (M: 3d-TM, Mn, Fe, Co, Ni) J.-G. Park (IBS-CCES, Seoul) Anomalous charge transport Bulk single crystal P.A. Joy & S. Vasudevan, PRB 46, 5425 (1992).

Families of Iron-Based Superconductors Sr O V As Fe FeSe Sr4V2O6Fe2As2 LaFeAsO BaFe2As2 LiFeAs Tcmax = 55 K Tcmax = 39 K Tcmax = 22 K Tcmax = 8 K Tcmax = 38 K

Families of Iron-Based Superconductors Sr O V As Fe FeSe Sr4V2O6Fe2As2 BaFe2As2 LaFeAsO LiFeAs KxFe2-ySe2 Ca4(Mg, Ti)3Fe2As2O8-y (Ca, La)Fe2As2 Tcmax = 55 K Tcmax = 39 K Tcmax = 22 K Tcmax = 8 K Tcmax = 38 K Tcmax = 55 K Tcmax = 45-49 K Tcmax = 48-49 K Tcmax = 47 K Already optimized !?

Why is Fe-As(Se) unique ? Tc vs Bond Angle 1UC FeSe FeSe

Tc vs Pn/Ch Height 1UC FeSe Y. Takano (NIMS)