Waseda univ. Yamada lab. D1 Chinami Kato

Slides:



Advertisements
Similar presentations
Stellar Structure Section 6: Introduction to Stellar Evolution Lecture 18 – Mass-radius relation for black dwarfs Chandrasekhar limiting mass Comparison.
Advertisements

Neutron Stars: Insights into their Formation, Evolution & Structure from their Masses and Radii Feryal Ozel University of Arizona In collaboration with.
ICECUBE & Limits on neutrino emission from gamma-ray bursts IceCube collaboration Journal Club talk Alex Fry.
End States Read Your Textbook: Foundations of Astronomy
Stephen C.-Y. Ng McGill University. Outline Why study supernova? What is a supernova? Why does it explode? The aftermaths --- Supernova remnants Will.
Compact remnant mass function: dependence on the explosion mechanism and metallicity Reporter: Chen Wang 06/03/2014 Fryer et al. 2012, ApJ, 749, 91.
Review for Quiz 2. Outline of Part 2 Properties of Stars  Distances, luminosities, spectral types, temperatures, sizes  Binary stars, methods of estimating.
The evolution and collapse of BH forming stars Chris Fryer (LANL/UA)  Formation scenarios – If we form them, they will form BHs.  Stellar evolution:
The role of neutrinos in the evolution and dynamics of neutron stars José A. Pons University of Alicante (SPAIN)  Transparent and opaque regimes.  NS.
The Diffuse Supernova Neutrino Background Louie Strigari The Ohio State University Collaborators: John Beacom, Manoj Kaplinghat, Gary Steigman, Terry Walker,
Neutron Star Formation and the Supernova Engine Bounce Masses Mass at Explosion Fallback.
Neutrinos from Stellar Collapse Chris Fryer (LANL/UNM) “Normal” Core Collapse: Collapse and Bounce, Fallback and Cooling More massive Stars Low Mass Stars.
Diffuse supernova neutrino flux Cecilia Lunardini Arizona State University And RIKEN BNL Research Center UCLA, September 2009.
P460 - Quan. Stats. III1 Nuclei Protons and neutrons in nuclei separately fill their energy levels: 1s, 1p, 1d, 2s, 2p, 2d, 3s…………… (we’ll see in 461 their.
Stellar Structure Section 6: Introduction to Stellar Evolution Lecture 17 – AGB evolution: … MS mass > 8 solar masses … explosive nucleosynthesis … MS.
21-25 January 2002 WIN 2002 Colin Okada, LBNL for the SNO Collaboration What Else Can SNO Do? Muons and Atmospheric Neutrinos Supernovae Anti-Neutrinos.
(Informal) workshop - Ferrara April 2004 SNe. Astrophysical (natural) Explosive Devices Thermonuclear SNe Gravitational collapse C-deflagration He-detonation.
Supernovae Oscar Straniero INAF – Oss. Astr. di Collurania (TE)
SUPERNOVA NEUTRINOS AT ICARUS
TAUP2007 Sep , 2007 Sendai, Japan Shiou KAWAGOE The Graduate University for Advanced Studies (SOKENDAI) / NAOJ JSPS Research Fellow T. Kajino, The.
Supernovas Supernova = When gravity wins… core collapses and a star explodes. Two main types: Type I and Type II Relatively rare: occur every years.
PHYS 1621 Fate of Stars INITIAL MASSFinal State relative to Sun’s mass M < 0.01planet.01 < M
Stellar Fuel, Nuclear Energy and Elements How do stars shine? E = mc 2 How did matter come into being? Big bang  stellar nucleosynthesis How did different.
Gravitational waves and neutrino emission from the merger of binary neutron stars Kenta Kiuchi Collaboration with Y. Sekiguchi, K. Kyutoku, M. Shibata.
Lecture 2: Formation of the chemical elements Bengt Gustafsson: Current problems in Astrophysics Ångström Laboratory, Spring 2010.
Neutrino-nucleus interaction and its role in supernova dynamics and nucleosynthesis Karlheinz Langanke GSI Helmholtzzentrum Darmstadt Technische Universität.
Dec. 6, Review: >8Msun stars become Type II SNe As nuclear burning proceeds to, finally, burning Silicon (Si) into iron (Fe), catastrophe looms.
Precise Cosmology from SNe Ia Wang Xiao-feng Physics Department and Tsinghua Center for Astrophysics, Tsinghua University 2005, 9, 22, Sino-French Dark.
9. Evolution of Massive Stars: Supernovae. Evolution up to supernovae: the nuclear burning sequence; the iron catastrophe. Supernovae: photodisintigration;
Hyperaccreting Disks around Neutrons Stars and Magnetars for GRBs: Neutrino Annihilation and Strong Magnetic Fields Dong Zhang (Ohio State) Zi-Gao Dai.
M. Selvi – 17 th June 2005 – Round Table in honour of prof. Koshiba e e x Supernova neutrino detection: present status and new ideas Marco Selvi Bologna.
Death of sun-like Massive star death Elemental my dear Watson Novas Neutron Stars Black holes $ 200 $ 200$200 $ 200 $ 200 $400 $ 400$400 $ 400$400.
Y. Matsuo A), M. Hashimoto A), M. Ono A), S. Nagataki B), K. Kotake C), S. Yamada D), K. Yamashita E) Long Time Evolutionary Simulations in Supernova until.
Selected Topics in Astrophysics
Magneto-hydrodynamic Simulations of Collapsars Shin-ichiro Fujimoto (Kumamoto National College of Technology), Collaborators: Kei Kotake(NAOJ), Sho-ichi.
Study of the type IIP supernova 2008gz Roy et al. 2011, MNRAS accepted.
Formation of BH-Disk system via PopIII core collapse in full GR National Astronomical Observatory of Japan Yuichiro Sekiguchi.
Neutrino Studies at the Spallation Neutron Source, ORNL, 8/29/03W.R. Hix (UTenn./ORNL) Neutrino-Nucleus Interactions and the Core Collapse Supernova Mechanism.
Chapter 13 Post Main Sequence Stellar Evolution. The Sun.
Supernovae: BeyondDC-Phase 1 Some remarks on supernovae Detection principle – Absorption lengths – Effective volumes – Noise Supernova dynamics & fundamental.
Ian Howarth UCL Science Centre ‘Science Lectures for Schools’ 2010 Nov 26.
Supernovas Neurino Signals in WATCHMAN Mark Vagins UC Irvine/Kavli IPMU 4 th Full WATCHMAN Collaboration Meeting UC Davis October 29, 2014.
The Key Role of the 12C+12C 20Ne+a 12C+12C 23Na+p 22Ne+a 25Mg+n (13C+a
Core-Collapse Supernovae and Supernova Relic Neutrinos
Projjwal Banerjee (UC Berkeley) with
(Xin-Heng Guo, Bing-Lin Young) Beijing Normal University
the s process: messages from stellar He burning
Star Formation Nucleosynthesis in Stars
The Fate of High-Mass Stars
International School of Nuclear Physics 39th Course, Erice-Sicily, Sep
Solar & Supernova Neutrinos Detection Methods and Prospects
Stellar core collapse with QCD phase transition
Rebecca Surman Union College
Self-consistent theory of stellar electron capture rates
Fermi Gas Distinguishable Indistinguishable Classical degenerate depend on density. If the wavelength.
Mysterious Abundances in Metal-poor Stars & The ν-p process
Supernovae and Gamma-Ray Bursts
Contents of the Universe
Big World of Small Neutrinos
Neutrinos and the deaths of Massive Stars
Observing Supernova Neutrinos to Late Times
No BH at the GC and Supernova Explosion Driven by Magnetic Molopoles
Death of stars Final evolution of the Sun
Neutrinos as probes of ultra-high energy astrophysical phenomena
N. Tominaga, H. Umeda, K. Maeda, K. Nomoto (Univ. of Tokyo),
Equation of State for Hadron-Quark Mixed Phase and Stellar Collapse
Supernova Nucleosynthesis and Extremely Metal-Poor Stars
Nucleosynthesis in Early Massive Stars: Origin of Heavy Elements
Feasibility of geochemical galactic neutrino flux measurement
Nucleosynthesis in jets from Collapsars
Presentation transcript:

Waseda univ. Yamada lab. D1 Chinami Kato Properties of pre-supernova neutrino in collapsing phase ~towards comprehensive neutrino studies Waseda univ. Yamada lab. D1 Chinami Kato Collaboration with S. Yamada(Waseda), H. Nagakura (Caltech), W. Iwakami(Kyoto), K. Takahashi (UT), T. Yoshida (UT), H. Umeda (UT), K. Ishidoshiro (Tohoku)

Outline ☑ Introduction ☑ Purpose ☑ Methods ☑ Results ☑ Summary & Future work

Introduction~Massive Star Evolution & Neutrino Stellar evolution Core collapse Supernova PNS cooling ~10 yr 1s 20s 7 The trigger of core collapse is EC Neutrino cooling decides core evolution ONe core collapse Fe core collapse ν γ

Introduction~Massive Star Evolution & Neutrino Stellar evolution Core collapse Supernova PNS cooling ~10 yr 1s 20s 7 Neutrinos give energy to stalled shock Neutrinos cool PNS towards NS Stalled shock Matter accretion PNS

Introduction~Massive Star Evolution & Neutrino Neutronization burst Stellar evolution Core collapse Supernova PNS cooling ~10 yr 1s 20s 7 Pre-SN neutrino SN neutrino ✓ structure of SN progenitor ・progenitor type ・convection property ・nuclear burning process etc. ✓ observational alert for SN ✓ mechanism of SN explosion ✓ nucleosynthesis of heavy nuclei ✓ EOS ✓ BH formation etc.

Purpose of our whole research ✓Detailed research about neutrino emission of each phase ✓Great progress of technique of neutrino observation Continuous neutrino spectrum & luminosity calculation of whole massive star evolutions Stellar evolution Core collapse Supernova PNS cooling Pre-SN neutrino SN neutrino present research

Purpose of present research Neutron Star Black Hole Brown Dwarf White Dwarf Electron Capture SN Fe Core Collapse SN M>Mup H He C+O O+Ne Si Fe 8M☉< M < Mup SAGB AGB H He C+O RG H He C+O H He H

Stellar evolution phase METHODS  Step.1 Back ground calculation ECSN:8.4M    12M    15M    Collapsing phase C. Kato et al. H.Nagakura(Caltech) W.Iwakami Stellar evolution phase K. Takahashi et al. Post process density temperature Ye νe distribution Fermi Block    luminosity & spectrum    Step.2 neutrino spectrum & luminosity Pair neutrino process

Results neutrino luminosity Stellar evolution phase Core Collapse phase ν Short duration    e 15M    FeCC-SN>ECSN×100 Constant luminosity    12M    Log Neutrino luminosity [erg/s] Drastic increase    ECSN:8.4M   

Results neutrino luminosity energy loss rate [erg/s/cm] 15M☉ High degeneracy    Low temperature    Dominant neutrino emission point T:0.7[MeV], ρ:10^9[g/cc]

Number/s/total number RESULTS normalized spectrum Kato et al.(2015) time    Stellar evolution phase LS SK ECSN:~5MeV FeCC-SN:~2MeV Number/s/total number

Number/s/total number RESULTS normalized spectrum Core Collapse phase Number/s/total number 12M    15M    ✓ Eave:~2MeV ⇒ no time evolution

Results number of events HK    SK    Water Cherenkov    KamLAND    Liquid scintillator   

Results number of events Inverse-β decay ✓event rate [s-1] ✓Neutrino oscillation ・adiabatic oscillation ・3 flavor mixing ν e p n + R=200pc survival probability normal 0.675 inverted 0.024 SK HK KamLAND JUNO threshold (MeV) 5.3 8.3 1.8 target number N 2.1× 10 33 3.6× 10 34 8.5× 10 31 1.7× 10 33

Stellar evolution phase Core Collapse phase Stellar evolution phase 15M    12M   

Detectable → FeCC-SN Non-detactable → EC-SN Results number of events detector 8.4M 12M 15M Normal Inverted inverted SK 0.025 0.010 25 8.9 62 22 KamLAND 0.0011 0.002 30 9 43 13 HK 0.30 0.13 11 81 31 JUNO 0.021 0.008 600 187 866 267 Detectable → FeCC-SN Non-detactable → EC-SN   ✓Betelgeuse of Orion(200pc)   ✓Antares of Scorpion(150pc) ✓ε star of Pegasus(210pc)         etc….. 6 candidates At JUNO we can detect neutrinos away from 1[kpc]!  No Background effects

Summary & Future work ☑ We focus on the 2 different types SN progenitors. ☑ At first, we calculate the background hydrodynamic values ☑ By post-process calculation, we get continuous neutrino luminosity about pair process from stellar evolution phase until core bounce. ☑ We can distinguish 2 types of progenitors by pre-SN neutrinos ☑ neutrino emission via weak interaction by heavy nucleus for progenitors ☑ calculate neutrino luminosities & spectrum about many progenitor initial masses      

Thank you for listening ! Stellar evolution Core collapse Supernova PNS cooling present research now going… Thank you for listening !