Presentation is loading. Please wait.

Presentation is loading. Please wait.

N. Tominaga, H. Umeda, K. Maeda, K. Nomoto (Univ. of Tokyo),

Similar presentations


Presentation on theme: "N. Tominaga, H. Umeda, K. Maeda, K. Nomoto (Univ. of Tokyo),"— Presentation transcript:

1 Nucleosynthesis in Population III Supernovae and Abundance Patterns of Hyper Metal-Poor Stars
N. Tominaga, H. Umeda, K. Maeda, K. Nomoto (Univ. of Tokyo), N. Iwamoto (JAERI)

2 Contents Hyper Metal-Poor stars Supernovae of Population III stars
Comparison with abundance patterns of observed stars 1-Dimensinal Mixing-Fallback model 2-Dimensional Jet model

3 Hyper Metal-Poor Stars

4 Metal-Poor Stars Hyper Metal-Poor (HMP): Ultra Metal-Poor (UMP):
[Fe/H]= log10(N(Fe)/N(H)) -log10(N(Fe)/N(H))8 Hyper Metal-Poor (HMP): Ultra Metal-Poor (UMP): Extremely Metal-Poor (EMP) : Very Metal-Poor (VMP): Solar: [Fe/H] < -5 [Fe/H] < -4 [Fe/H] < -3 [Fe/H] < -2 [Fe/H] ~ 0 (Beers & Christlieb 2005) Compare with results of nucleosynthesis calculations.

5 Metal-Poor Stars-2 Reflect abundance patterns of the early Universe
The abundance patterns of ejecta from Pop III or Pop II SNe A gap exists between EMP stars and HMP stars. HMP [Fe/H] < -3 stars: Individual SN yields [Fe/H] ~ -2.5 stars: IMF integrated yield of PopIII (or EMP) SNe UMP C-rich EMP EMP

6 Population III Supernovae

7 Population III Supernovae
Pair-Instability Supernovae 140~300M8 Evolution H He Observationally no evidence H,He O Si Fe Pop III stars 11M8~130M8 BH/NS Core-Collapse Supernovae

8 Explosion and Mass Cut Post-shock T T∝R-3/4E1/4 High T (T>5×109K)
Shock Propagation Post-shock T T∝R-3/4E1/4 Mass Cut Mcut Fe High T (T>5×109K) Fe,α,Ti,Zn,Co,V Middle T (>T>4×109K) Fe,Si,Cr,Mn Low T (>T>3×109K) Si The boundary between the ejecta and the central remnant

9 Hypernova and faint SN Hypernova Branch Faint SN Branch
Nomoto et al (astro-ph/ ) Hypernova Branch Faint SN Branch

10 Comparison with Abundance Patterns of Observed Stars
HMP stars HE (Cristlieb et al. 2002) HE (Frebel, Aoki, et al. 2005) C-rich EMP stars CS (Aoki et al. 2004) EMP stars -4.2<[Fe/H]<-3.5 (Cayrel et al. 2004) VMP stars -2.7<[Fe/H]<-2.0 (Cayrel et al. 2004)

11 1-Dimensional Mixing-Fallback Model

12 EMP Stars -4.2<[Fe/H]<-3.5 Hypernova Model: M=25M☉, 2×1052erg
Tominaga et al. 2005

13 Mixing-Fallback Model
Mixing region Fallback Fe BH Mixing Region f : ejection factor Mixing Umeda & Nomoto 2002 Fallback

14 EMP Stars f=0.1 -4.2<[Fe/H]<-3.5 Hypernova
M=25M8,1×1051erg Normal SN -4.2<[Fe/H]<-3.5 f=0.1 Hypernova Model: M=25M☉, 2×1052erg Tominaga et al. 2005

15 C-rich EMP Stars f~10-3 CS29498-043 Model: M=50M☉, 5×1052erg
Umeda & Nomoto 2005

16 VMP Stars -2.7<[Fe/H]<-2.0 Model: Z=0 IMF integrated (11~70M8)
Tominaga et al. 2005

17 Conclusion (Mixing-Fallback model)
Faint SN Normal SN + Hypernova Faint SN Hypernova Mass Energy (1051erg) f M(Fe) Stars Hypernova 25~50? 20~40 0.1 0.1~0.2 EMP Faint SN (EMP) 25~100? <1 10-3 0.01 C-rich EMP Faint SN (HMP) 10-5 HMP Normal SN 13~20 1 0.07 VMP ~ ~

18 2-Dimensional Jet-induced Model

19 Massive Stars Explosion
Central Remnant <25M8 Neutron Star 25M8< Black Hole BH/NS Massive stars (M>25M8) Spherical explosion Never succeeded, except for Wilson 1985 Jet-like explosion Collapsar Model (MacFadyen, Woosley, & Heger 2001)

20 Jet-induced explosion
Tominaga et al. 2005 Jet Jet Hydrodynamics of relativistic jets Nucleosynthesis BH BH Progenitor cf. Collapsar model (MacFadyen, Woosley, & Heger 2001) MMS=40M8 . Mcut (Mcut=1.75M8) θjet (θjet=5°) vjet (vjet=0.98c, Γjet=5) Ejet (Ejet= Ejet×tjet=1.5×1052erg) fth (fth=Eth/ Ejet=10-3) Ejet: Energy injection rate (Rotation etc.) .

21 Multi-dimensional relativistic hydrodynamics
←Lorentz factor Conserved quantity (D,S1,S2,S3,τ) ←Density ←Momentum ←Energy ←Equation of continuity ←Conservation of momentum ← Conservation of energy Marti & Muller 1994

22 Density structure 1s after 3s after 5s after 10s after

23 Fallback-Ejection . 1D: ejection factor f 2D: Ejet Fallback
He Jet materials : O/C Jet fallen-back materials ejected as jets O/Mg Si stellar materials : Fe Fallback materials outside the fallback region

24 After explosion (100sec) log scale Jet materials Density structure
12 Fe Density structure 11 Fe Stellar materials linear scale Fallback 10 10 10.5 11 11.5 12 log10(R)

25 . Dependence: Ejet . . . . . Ejet↓: Fallback↑ M(Fe)↓ [X/Fe]↑
Ejet,51=Ejet/1051erg/s . . Ejet,51=15 Ejet,51=0.3 He O/C O/Mg Si Fallback Fallback Fe

26 . Dependence: Ejet . . EMP stars C-rich EMP stars
CS EMP stars Ejet,51=15 -4.2<[Fe/H]<-3.5

27 Conclusion . . . . . . . (Jet Model) MP stars
C-rich EMP MP stars EMP stars: Ejet,51=15 C-rich EMP stars: Ejet,51~1 HMP stars: Ejet,51=0.15 UMP stars (-5<[Fe/H]<-4) EMP stars: Ejet,51>1 HMP stars: Ejet,51<0.5 . Abundance ratio [X/Y] . . HMP Ejet,51 EMP . M(Fe)star M(Fe)jet EMP UMP Fe Mass [M8] . Few stars . HMP . Ejet,51

28 Summary Both of the 1D & 2D models can reproduce the observations. 1D 2D HMP f=10-5 Ejet,51<0.5 UMP 10-5<f<10-3 0.5<Ejet,51<1 C-rich EMP f=10-3 Ejet,51~1 EMP f=0.1 Ejet,51~10 . . . . The properties of 2D Jet model The f in 1D model corresponds to the Ejet. The absence of UMP stars can be understood by the narrow range of Ejet. . .


Download ppt "N. Tominaga, H. Umeda, K. Maeda, K. Nomoto (Univ. of Tokyo),"

Similar presentations


Ads by Google