Progress with GaAs Pixel Detectors

Slides:



Advertisements
Similar presentations
Image quality and spectroscopic characteristics of different silicon pixel imaging systems M. G. Bisogni, D.Bulajic, M. Boscardin, G. F. Dalla Betta, P.
Advertisements

First DQE measurment of 500 µm thick Si hybrid pixel sensor with Photon counting readout for X-ray medical imaging M.Caria, J.Chaput, L.Sarry, B.Surre.
A silicon microstrip sensor for use in dental digital radiography P.F. van der Stelt Academic Centre for Dentistry Amsterdam, Amsterdam, the Netherlands.
Imaging Properties of the Medipix2 System exploiting Single and Dual Energy Thresholds L. Tlustos 1, R. Ballabriga 1, M. Campbell 1, E. Heijne 1, k Kincade.
Standalone VeloPix Simulation Jianchun Wang 4/30/10.
B. Mikulec* M. Campbell, E. Heijne, X. Llopart, L. Tlustos CERN, Medipix Collaboration * now with the University of Geneva, Switzerland X-ray Imaging Using.
Photon detection Visible or near-visible wavelengths
K.-F. Pfeiffer, PI4 Universität Erlangen-Nürnberg 1 IWORID 4, September 2002 Large scale x-ray images taken with the Medipix1 chip Karl-Friedrich Pfeiffer.
Applications of a Pixellated Detection System to Digital Mammography
Measurement Results Detector concept works! Flood fields show MCP fixed pattern noise that divides out Spatial resolution consistent with theory (Nyqvist.
Silicon Sensor with Readout ASICs for EXAFS Spectroscopy Gianluigi De Geronimo, Paul O’Connor Microelectronics Group, Instrumentation Division, Brookhaven.
07 October 2004 Hayet KEBBATI -1- Data Flow Reduction and Signal Sparsification in MAPS Hayet KEBBATI (GSI/IReS)
Erik HEIJNE CERN PH DepartmentRADWORKSHOP 29 November 2005 MEDIPIX2 for VERY LOW DOSE INITIAL LHC BENCHMARKING MEDIPIX2 for VERY LOW DOSE INITIAL LHC BENCHMARKING.
Fully depleted MAPS: Pegasus and MIMOSA 33 Maciej Kachel, Wojciech Duliński PICSEL group, IPHC Strasbourg 1 For low energy X-ray applications.
Performance limits of a 55  m pixel CdTe detector G.Pellegrini, M. Lozano, R. Martinez, M. Ullan Centro Nacional de Microelectronica, Barcelona, 08193,
Development of a high-speed single photon pixellated detector for visible wavelengths Introduction A photon incident on the photocathode produces a photoelectron.
Advanced semiconductor detectors of neutrons
Recent developments on Monolithic Active Pixel Sensors (MAPS) for charged particle tracking. Outline The MAPS sensor (reminder) MIMOSA-22, a fast MAPS-sensor.
DynAMITe: a Wafer Scale Sensor for Biomedical Applications M. Esposito 1, T. Anaxagoras 2, A. Fant 2, K. Wells 1, A. Kostantinidis 3, J. Osmond 4, P. Evans.
Strasbourg, France, 17 December, 2004, seminairGrzegorz DEPTUCH  MAPS technology decoupled charge sensing and signal transfer (improved radiation.
J. Crooks STFC Rutherford Appleton Laboratory
Technology Overview or Challenges of Future High Energy Particle Detection Tomasz Hemperek
L.Royer– Calice LLR – Feb Laurent Royer, J. Bonnard, S. Manen, P. Gay LPC Clermont-Ferrand R&D pole MicRhAu dedicated to High.
The development of the readout ASIC for the pair-monitor with SOI technology ~irradiation test~ Yutaro Sato Tohoku Univ. 29 th Mar  Introduction.
Radiation hardness of Monolithic Active Pixel Sensors (MAPS)
COMETH*: a CMOS pixel sensor for a highly miniaturized high-flux radiation monitor Yang ZHOU, Jérôme Baudot, Christine Hu-Guo, Yann Hu, Kimmo Jaaskelainen,
Prospects to Use Silicon Photomultipliers for the Astroparticle Physics Experiments EUSO and MAGIC A. Nepomuk Otte Max-Planck-Institut für Physik München.
W. Kucewicz a, A. A.Bulgheroni b, M. Caccia b, P. Grabiec c, J. Marczewski c, H.Niemiec a a AGH-Univ. of Science and Technology, Al. Mickiewicza 30,
-1-CERN (11/24/2010)P. Valerio Noise performances of MAPS and Hybrid Detector technology Pierpaolo Valerio.
Progress with GaAs Pixel Detectors K.M.Smith University of Glasgow Acknowledgements: RD8 & RD19 (CERN Detector R.&D. collaboration) XIMAGE (Aixtron, I.M.C.,
FrontierScience G.P.1 MATRIX an innovative Pixel Ionization Chamber for Online Monitoring of Hadrontherapy Treatments Giuseppe Pittà.
Monolithic and Vertically Integrated Pixel Detectors, CERN, 25 th November 2008 CMOS Monolithic Active Pixel Sensors R. Turchetta CMOS Sensor Design Group.
Stéphanie Hustache-Ottini S LEIL SYNCHROTRON iWoRID 2011 – 140 – July 5 th Towards ps and fs diffraction with the XPAD detector S. Hustache-Ottini 1, J.-C.
Edgeless semiconductor sensors for large-area pixel detectors Marten Bosma Annual meeting Nikhef December 12, 2011, Amsterdam.
Equalization of Medipix2 imaging detector energy thresholds using measurement of polychromatic X-ray beam attenuation Josef Uher a,b, Jan Jakubek c a CSIRO.
Medipix3 chip, downscaled feature sizes, noise and timing resolution of the front-end Rafael Ballabriga 17 June 2010.
Highlights from the VTX session Marc Winter & Massimo Caccia R&D reports: – DEPFET (M. Trimpl) – CCD (S. Hillert) – UK-CMOS (J.Velthuis) – Continental-CMOS.
NEWS FROM MEDIPIX3 MEASUREMENTS AND IMPACT ON TIMEPIX2 X. Llopart CERN.
Presented by Renato Turchetta CCLRC - RAL 7 th International Conference on Position Sensitive Detectors – PSD7 Liverpool (UK), September 2005 R&D.
1 Topic Report Photodetector and CCD Tuan-Shu Ho.
Semiconductor Detectors and Applications on X-ray imaging Natalie Diekmann Particle Physics 1 NIKHEF.
6:th IWORID, Glasgow, Scotland, July 2004 Energy Dependence in Dental Imaging with Medipix 2 Börje Norlin & Christer Fröjdh Mid Sweden University.
DEVELOPMENT OF PIXELLATED SEMICONDUCTOR DETECTORS FOR NEUTRON DETECTION Prof. Christer Fröjdh Mid Sweden University.
A new family of pixel detectors for high frame rate X- ray applications Roberto Dinapoli †, Anna Bergamaschi, Beat Henrich, Roland Horisberger, Ian Johnson,
Ivan Peric, Christian Kreidl, Peter Fischer University of Heidelberg
for the SPiDeR collaboration (slides from M. Stanitski, Pixel2010)
Quantum Array Detectors
Silicon eyes for radio-labeled biological samples
Elettra Sincrotrone Trieste
Charge sensitive amplifier
LHC1 & COOP September 1995 Report
Radiation Monitor: Concepts, Simulation for an Advanced Read Out
Jan Soldat, Heidelberg University for the DSSC ASIC design groups
M. C. Veale1, S. J. Bell1,2, D. D. Duarte1,2, M. J. French1, M
HV-MAPS Designs and Results I
Performance of the Medipix and Timepix devices for the recognition of electron-gamma radiation fields C. Teyssier1,3, J. Bouchami1, F. Dallaire1, J. Idarraga1,
Exploring the limits of hybrid pixel detectors with MÖNCH
Characterisation and Application of Photon Counting X-ray Detector Systems Disputation seminar
HVCMOS Detectors – Overview
TCAD Simulation and test setup For CMOS Pixel Sensor based on a 0
Signal processing for High Granularity Calorimeter
Beam Test Results for the CMS Forward Pixel Detector
Readout Electronics for Pixel Sensors
A new family of pixel detectors for high frame rate X-ray applications Roberto Dinapoli†, Anna Bergamaschi, Beat Henrich, Roland Horisberger, Ian Johnson,
Computed Tomography (C.T)
Active Pixel Sensors for Electron Microscopy
Front-end Digitization for fast Imagers.
Phase Frequency Detector &
Readout Electronics for Pixel Sensors
Presentation transcript:

Progress with GaAs Pixel Detectors K.M.Smith University of Glasgow Acknowledgements: RD8 & RD19 (CERN Detector R.&D. collaboration) XIMAGE (Aixtron, I.M.C., Metorex, Freiburg, Glasgow, K.T.H.) MEDIPIX (CERN, Freiburg, Glasgow, Pisa) IMPACT (B.N.F.L., E.E.V., Oxford Instr., R.A.L., Glasgow, Imperial College, Leicester, UMIST) NSS Toronto 11/11/’98 K.M.Smith

Imaging Requirements Good 2-dimensional resolution(< 100 µm) Linear dynamic range for low contrast (< 3%) Lower dose to Patient/Sample in medical applications Image processing capability (digital image) Readout Electronics Detector - Large dynamic range - 2-dimensional geometry (Pixel) - Single photon counting - High conversion efficiency for g - Low noise energies in the range 5 - 100 keV - Digital output - Good charge collection NSS Toronto 11/11/'98 K.M.Smith

Why Single Photon Counting? Linear and extendable dynamic range Energy threshold 1) Compton suppression 2) Large signal-to-noise ratio 3) Insensitive to leakage current Local threshold tuning ( for each pixel): - can also be used for gain equalisation Asynchronous counting Minimum dead time NSS Toronto 11/11/'98 K.M.Smith

Photon Counting Devices Monolithic Pixel Detectors Material budget (H.E.P.) fabrication cost material choices efficiency application specific NSS Toronto 11/11/'98 K.M.Smith

Photon counting devices Hybrid Pixel Sensors separation of detector - r/o material choice efficiency dynamic range smart pixels cost spatial resolution bump bonding NSS Toronto 11/11/'98 K.M.Smith

Hybrid Pixel Detectors NSS Toronto 11/11/'98 K.M.Smith

Detection Modes Integration Photon Counting spatial resolution cheap experience dynamic range detection efficiency r/o speed cost (if custom made) charge integration Photon Counting individual particle counting choice of active media detection-r/o separated efficiency dynamic range “smart” pixels spatial resolution bump bonding cost NSS Toronto 11/11/'98 K.M.Smith

Ω3 ROIC (CERN) Pixel detectors Matrix of 128 rows and 16 columns Row pitch (depth) = 50 mm Column pitch (width) = 500 mm total area = 8 x 6.35 mm2 ENC ~ 100 e- rms Individual pixel addressing (mask + test) Globally adjustable threshold NSS Toronto 11/11/'98 K.M.Smith

Ω3 500 m 28m 50m NSS Toronto 11/11/'98 K.M.Smith

Image - Washer (Al) GaAs - 3 full matrix single column 500m step NSS Toronto 11/11/'98 K.M.Smith

Image Quality (II) Flood image NSS Toronto 11/11/'98 K.M.Smith

MTF comparison NSS Toronto 11/11/'98 K.M.Smith

detector X-Ray Diffraction Powder Method   2 X-ray beam d d sin Powder sample detector detector 2d sin = n  Bragg’s law NSS Toronto 11/11/'98 K.M.Smith

Silicon Powder (XRD) NSS Toronto 11/11/'98 K.M.Smith

Si-XRD (Resolution) NSS Toronto 11/11/'98 K.M.Smith

Potassium Niobate (XRD) NSS Toronto 11/11/'98 K.M.Smith

Potassium Niobate (XRD) NSS Toronto 11/11/'98 K.M.Smith

Potassium Niobate NSS Toronto 11/11/'98 K.M.Smith

MEDIPIX A true single photon counting readout chip 64 x 64 pixel matrix pixel dim. 170 x 170 m2 Sensitive area 1 cm2 Individually adjust threshold 15-bit counter Frame r/o 384 s at 10MHz NSS Toronto 11/11/'98 K.M.Smith

GaAs detector Image - Objects (Pb) Thickness 600m NSS Toronto 11/11/'98 K.M.Smith

Read-out Electronics Photon Counting Chip (PCC): based on ideas developed by the RD19 collaboration (CERN) SACMOS 1mm FASELEC Technology Matrix of 64 x 64 Pixels Pixel size 170 mm x 170 mm 1.2 cm2 sensitive area 1.7 cm2 total area 1.6 M transistors NSS Toronto 11/11/'98 K.M.Smith

Pixel Design Charge sensitive amplifier with leakage current compensation Discriminator with globally settable threshold 3-bit local threshold adjustment Individual pixel test and mask modes Counting controlled by shutter signal 15-bit pseudo-random counter 16-bit I/O Bus Readout frequency: max. 10 MHz Readout time: 384 ms NSS Toronto 11/11/'98 K.M.Smith

Performance of readout NSS Toronto 11/11/'98 K.M.Smith

Detector performance Interesting energy range for medicine 10 - 100 keV [NIST Physical Reference Data] NSS Toronto 11/11/'98 K.M.Smith

Detector design Material: GaAs, S.I., 200 mm thick 64 x 64 pixel matrix square pixels of 170 x 170 mm2 1.2 cm2 sensitive area NSS Toronto 11/11/'98 K.M.Smith

Electrical performance of system System = detector flip-chip bonded to readout chip Bonded detector settings: min. mean threshold: ~2000 e- trimmed threshold rms: ~125 e- noise: ~200 e- (Note: a photon of 20 keV produces about 4700 e- in GaAs) NSS Toronto 11/11/'98 K.M.Smith

Measurement of contrast ratio Signal Contrast Ratio: SCR = Signal to Noise: SNR= Distinguishing low contrast objects means: Earlier recognition of tumours Reduction of dose to patient Incident photons | n - n’| n n n’ Object Detector | n - n’| n NSS Toronto 11/11/'98 K.M.Smith

Results of Contrast Ratio Measurements Comparison of Experimental and Measured Contrast Ratios: Objects with Contrast Ratio of 1.9% can be Identified NSS Toronto 11/11/'98 K.M.Smith

Summary and Conclusions Successful bump-bonding of 64 x 64 pixel array to ROIC Measured threshold of ~2000 e- with ~125 e- rms Images of a variety of objects illuminated with 241Am- and 109Cd-sources Correctly identified objects of low contrast (1.9 %) The system enables the evaluation of the potential and limitations of the photon counting method NSS Toronto 11/11/'98 K.M.Smith

Image correction method Gain map: detector X2:3 NSS Toronto 11/11/'98 K.M.Smith

Image correction before after NSS Toronto 11/11/'98 K.M.Smith

Hybridized GaAs pixel detector Sens-A-Ray Si-CCD NSS Toronto 11/11/'98 K.M.Smith

Source Measurements: 241Am (g-photons of 60 keV) Steel locking nut; Steel screw 300 - 500 mm thick 6 mm long; 1mm slot NSS Toronto 11/11/'98 K.M.Smith

Pixelcell Layout Photo 170 mm NSS Toronto 11/11/'98 K.M.Smith

First Measurement of an Organic Sample with 109Cd source Fish Tail irradiation g NSS Toronto 11/11/'98 K.M.Smith

Measurements with sources: 109Cd (photons of 22 and 25 keV) Tungsten wire,  500 mm 300 mm thick copper mask, 300 mm NSS Toronto 11/11/'98 K.M.Smith

Contrast Measurements NSS Toronto 11/11/'98 K.M.Smith

Electrical performance NSS Toronto 11/11/'98 K.M.Smith

Source Measurements: 241Am (g-photons of 60 keV) Steel screw Steel locking nut; 6 mm long; 1mm slot 300 - 500 mm thick NSS Toronto 11/11/'98 K.M.Smith

Pixel cell NSS Toronto 11/11/'98 K.M.Smith

Hybrid Pixel Detector NSS Toronto 11/11/'98 K.M.Smith

Simulated response of ERD1 Si pixel detector NSS Toronto 11/11/'98 K.M.Smith

Simulated response of Si pixel detector to 137 Cs NSS Toronto 11/11/'98 K.M.Smith

Preliminary evaluation of MEDIPIX read-out chip on Glasgow LEC GaAs pixel detector NSS Toronto 11/11/'98 K.M.Smith