1GRWG/GDWG Annual Meeting Tsukuba 29 Feb – 4 Mar 2016 Rűdiger Lang, Rose Munro, Gabriele Poli, Antoine Lacan, Christian Retscher, Michael Grzegorski, Alexander.

Slides:



Advertisements
Similar presentations
OMI follow-on Project Toekomstige missies gericht op troposfeer en klimaat Pieternel Levelt, KNMI.
Advertisements

WP 5 : Clouds & Aerosols L.G. Tilstra and P. Stammes Royal Netherlands Meteorological Institute (KNMI) SCIAvisie Meeting, KNMI, De Bilt, Absorbing.
GOME-2 FM3 (Metop-A) Instrument Review, EUMETSAT, Darmstadt, June 2012 Slide: 1 Rűdiger Lang, Rose Munro, Antoine Lacan, Richard Dyer, Marcel Dobber, Christian.
 nm)  nm) PurposeSpatial Resolution (km) Ozone, SO 2, UV8 3251Ozone8 3403Aerosols, UV, and Volcanic Ash8 3883Aerosols, Clouds, UV and Volcanic.
Satellite SST Radiance Assimilation and SST Data Impacts James Cummings Naval Research Laboratory Monterey, CA Sea Surface Temperature Science.
GOES-R AEROSOL PRODUCTS AND AND APPLICATIONS APPLICATIONS Ana I. Prados, S. Kondragunta, P. Ciren R. Hoff, K. McCann.
Page 1 1 of 21, 28th Review of Atmospheric Transmission Models, 6/14/2006 A Two Orders of Scattering Approach to Account for Polarization in Near Infrared.
Page 1 1 of 20, EGU General Assembly, Apr 21, 2009 Vijay Natraj (Caltech), Hartmut Bösch (University of Leicester), Rob Spurr (RT Solutions), Yuk Yung.
Lunar Observations of Changes in the Earth’s Albedo (LOCEA) Alexander Ruzmaikin Jet Propulsion Laboratory, California Institute of Technology in collaboration.
Cooperative Institute for Meteorological Satellite Studies University of Wisconsin - Madison Steve Ackerman Director, Cooperative Institute for Meteorological.
Rutherford Appleton Laboratory Remote Sensing Group Ozone Profile Retrieval from MetOp R. Siddans, G. Miles, B. Latter A. Waterfall, B. Kerridge Acknowledgements:
Quality of the official SCIAMACHY Absorbing Aerosol Index (AAI) level-2 product L.G. Tilstra and P. Stammes Royal Netherlands Meteorological Institute.
Earth Observation Science Recent and potential scientific achievements of the (A)ATSR Series - and some possibilities for synergy with MERIS David Llewellyn-Jones.
EUMETSAT METEOROLOGICAL SATELLITE CONFERENCE 15/09/2013 – 20/09/2013, VIENNA EUMETSAT METEOROLOGICAL SATELLITE CONFERENCE 15/09/2013 – 20/09/2013, VIENNA.
REMOTE SENSING OF ATMOSPHERIC AEROSOL, CLOUDS, AND AEROSOL-CLOUD INTERACTION 16/12-19/12/2013, BREMEN Retrieval of aerosol optical properties for clear-sky.
Régis Borde Polar Winds EUMETRAIN Polar satellite week 2012 Régis Borde
WP 8: Impact on Satellite Retrievals University of l’Aquila (DFUA [12]): Vincenzo Rizi Ecole Polytechnique (EPFL [13]): Bertrand Calpini Observatory of.
NOAA/NESDIS Cooperative Research Program Second Annual Science Symposium SATELLITE CALIBRATION & VALIDATION July Barry Gross (CCNY) Brian Cairns.
1 of 26 Characterization of Atmospheric Aerosols using Integrated Multi-Sensor Earth Observations Presented by Ratish Menon (Roll Number ) PhD.
GSICS Bias Monitoring Routine comparisons of satellite radiances against reference GSICS Correction Function to correct issued radiances For consistent.
Task 4 - Validation: Progress Meeting 2 R. Siddans, B. Kerridge, Jane Hurley STFC Rutherford Appleton Laboratory.
POLAR MULTI-SENSOR AEROSOL PROPERTIES OVER LAND Michael Grzegorski, Rosemary Munro, Gabriele Poli, Andriy Holdak and Ruediger Lang.
The Second TEMPO Science Team Meeting Physical Basis of the Near-UV Aerosol Algorithm Omar Torres NASA Goddard Space Flight Center Atmospheric Chemistry.
Testing LW fingerprinting with simulated spectra using MERRA Seiji Kato 1, Fred G. Rose 2, Xu Liu 1, Martin Mlynczak 1, and Bruce A. Wielicki 1 1 NASA.
Synergy of MODIS Deep Blue and Operational Aerosol Products with MISR and SeaWiFS N. Christina Hsu and S.-C. Tsay, M. D. King, M.-J. Jeong NASA Goddard.
SATELLITE REMOTE SENSING OF TERRESTRIAL CLOUDS Alexander A. Kokhanovsky Institute of Remote Sensing, Bremen University P. O. Box Bremen, Germany.
Introduction GOES-R ABI will be the first GOES imaging instrument providing observations in both the visible and the near infrared spectral bands. Therefore.
SCIAMACHY TOA Reflectance Correction Effects on Aerosol Optical Depth Retrieval W. Di Nicolantonio, A. Cacciari, S. Scarpanti, G. Ballista, E. Morisi,
Methane Retrievals in the Thermal Infrared from IASI AGU Fall Meeting, 14 th -18 th December, San Francisco, USA. Diane.
Bias analysis and correction for MetOp/AVHRR IR channel using AVHRR-IASI inter-comparison Tiejun Chang and Xiangqian Wu GSICS Joint Research and data Working.
GSICS meeting 5-8 March 2012, Beijing, China Slide: 1 Discussion Using GOME and SCIAMACHY as re- calibration reference for Visible and Near-Infrared channels.
NOAA GPRC Report Fangfang Yu and Fred Wu 05 March 2012.
NOAA GPRC Report 2013 GSICS Annual Meeting Williamsburg, VA 03/04/ /08/2013.
Visible vicarious calibration using RTM
Calibrating raw data of UVN instrumentation – Lessons learned for a UVN GSICS sub-group on instrument characterisation Rűdiger Lang, Rose Munro, Antoine.
Fourth TEMPO Science Team Meeting
GSICS Web Meeting, 17 November 2011
Proposal for (on-ground) calibration white paper
GOME-2 level 1: calibrated radiances from two Metops – slit function performance, signal forecasts and EoL activities Rűdiger Lang, Rose Munro, Antoine.
METimage Calibration Pepe Phillips GSICS Data & Research Working
Benjamin Scarino, David R
SEVIRI Solar Channel Calibration system
DCC method implementation in FY3/MERSI and FY2
Spectral Band Adjustment Factor (SBAF) Tool
Concept study GOME-2/AVHRR radiance inter-comparison
JMA’s GSICS and SCOPE-CM activities Presented to CGMS-43 Working Group II session, agenda item 3 (from MTSAT-2) Japan Meteorological Agency.
Absolute calibration of sky radiances, colour indices and O4 DSCDs obtained from MAX-DOAS measurements T. Wagner1, S. Beirle1, S. Dörner1, M. Penning de.
Verifying the DCC methodology calibration transfer
Requirements Consolidation of the Near-Infrared Channel of the GMES-Sentinel-5 UVNS Instrument: FP, 25 April 2014, ESTEC Height-resolved aerosol R.Siddans.
Masaya Takahashi Meteorological Satellite Center,
Using Sun Glint and Antarctic Ice Sheets to Calibrate MODIS and AVHRR Observations of Reflected Sunlight William R. Tahnk and James A. Coakley, Jr Cooperative.
GOES-East DCC analysis
Need for TEMPO-ABI Synergy
Geostationary Sounders
GSICS UV sub-group: GOME-2 hyper-spectral radiances for calibration of imager data Rűdiger Lang, Rose Munro, Gabriele Poli, Antoine Lacan, Christian Retscher,
Activity 4: GOME2 Matthijs Krijger Ralph Snel Pieter van der Meer
GOME-2 hyper-spectral reflectance measurements: Inter-comparison with AVHRR and Seviri Rűdiger Lang, Rose Munro, Antoine Lacan, Christian Retscher, Gabriele.
Manik Bali Jonathan Mittaz
The Successor of the TOU
Intercomparison of IASI and CrIS spectra
Changchun Institute of Optics Fine Mechanics and Physics
Implementation of DCC at JMA and comparison with RTM
AIRS/GEO Infrared Intercalibration
GOES -12 Imager April 4, 2002 GOES-12 Imager - pre-launch info - radiances - products Timothy J. Schmit et al.
KMA Agency Report NMSC/KMA
Dorothee Coppens.
Preliminary SCIAMACHY Lunar observations as intercalibration source
Strawman Plan for Inter-Calibration of Solar Channels
Use of GSICS to Improve Operational Radiometric Calibration
G16 vs. G17 IR Inter-comparison: Some Experiences and Lessons from validation toward GEO-GEO Inter-calibration Fangfang Yu, Xiangqian Wu, Hyelim Yoo and.
Presentation transcript:

1GRWG/GDWG Annual Meeting Tsukuba 29 Feb – 4 Mar 2016 Rűdiger Lang, Rose Munro, Gabriele Poli, Antoine Lacan, Christian Retscher, Michael Grzegorski, Alexander Kokhanovsky, Rasmus Lindstrot, Richard Dyer and Ed Trollope GSICS UV sub-group: GOME-2 hyper-spectral radiances for calibration of AVHRR imager data

2GRWG/GDWG Annual Meeting Tsukuba 29 Feb – 4 Mar 2016 GOME-2 Hyper-Spectral Radiances for calibration of AVHRR imager data - Outline GOME-2 calibration of AVHRR channel 1 radiances GOME-2 calibration of Seviri channel 1 radiances (as additional material) PMAp – Polar Multi-sensor Aerosol product: Towards continuous calibration of AVHRR Visible (and IR) channels

3GRWG/GDWG Annual Meeting Tsukuba 29 Feb – 4 Mar 2016 Metop-A/B GOME-2 Radiometric accuracy and calibration Earthshine measurement co-location FM2 to FM3 / Co-location criteria Co-location criteria: Area overlap > 80% Geo. AMF diff < 2% Relative O 2 A-Band residual (ROR) smaller than empirical threshold GOME-2 FM3 Metop-A GOME-2 FM2 Metop-B Metop-A (M02): FM3 Metop-B (M01): FM2 Time difference: 49 min (half an orbit)

4GRWG/GDWG Annual Meeting Tsukuba 29 Feb – 4 Mar 2016 Metop-B / FM2 Radiometric accuracy and calibration Earthshine measurement co-location to Metop-A / FM3 / Radiances Radiance residuals are dominated by FM3 degradation signature GOME-2 FM3 Metop-A GOME-2 FM2 Metop-B

5GRWG/GDWG Annual Meeting Tsukuba 29 Feb – 4 Mar 2016 Example for an average over multiple FM2/FM3 residuals in reflectance. Prelim. Approach: A linear background is subtracted per channel to account for the difference in reflectance-degradation and for broad-band differences in the different observed atmospheric paths per instrument. Looking for the small scale structures per channel GOME-2 FM3 Metop-A GOME-2 FM2 Metop-B Metop-A/B GOME-2 Radiometric accuracy and calibration Earthshine co-located Metop-A/B residuals Background predominantly from Metop-A degradation

6GRWG/GDWG Annual Meeting Tsukuba 29 Feb – 4 Mar 2016 Residual in reflectance + Lin. background subtracted per channel + 20 pix. moving average smoothing + Relative Oxygen-A band Residual (ROR) selection criterium Metop-A/B GOME-2 Radiometric accuracy and calibration Earthshine co-located Metop-A/B reflectances and residuals GOME-2 FM3 Metop-A GOME-2 FM2 Metop-B

7GRWG/GDWG Annual Meeting Tsukuba 29 Feb – 4 Mar 2016 GOME-2 FM3 Metop-A GOME-2 FM2 Metop-B Metop-A/B GOME-2 Radiometric accuracy and calibration Earthshine co-located Metop-A/B residuals / Background-subtracted plus degradation residual from Metop-A Background subtracted co-located Metop-A/B residual Background subtracted temporal degradation residual Metop-A

8GRWG/GDWG Annual Meeting Tsukuba 29 Feb – 4 Mar 2016 GOME-2 FM3 Metop-A GOME-2 FM2 Metop-B Background subtracted co-located Metop-A/B residual without the temporal degradation contribution of Metop-A Metop-A/B GOME-2 Radiometric accuracy and calibration Earthshine co-located Metop-A/B residuals / Background-subtracted plus degradation residual from Metop-A subtracted

9GRWG/GDWG Annual Meeting Tsukuba 29 Feb – 4 Mar 2016 GOME-2 Ch:3 (Band 5) 1024 measurements GOME-2 Ch:4 (Band 6) 1024 measurements AVHRR ch1 response function GOME-2/AVHRR reflectance inter-calibration AVHRR ch 1/ Metop-A GOME-2 FM3 Metop-A

10GRWG/GDWG Annual Meeting Tsukuba 29 Feb – 4 Mar AVHRR channel 1 to GOME-2/Metop-A gain in reflectance >10% (AVHRR < GOME-2) Results indicate that the gain has been quite stable from 2007 to see GSICS Quarterly Newsletters, vol 5, number 3, Latter et al. GOME-2 FM3 Metop-A GOME-2 / AVHRR reflectance inter-calibration AVHRR ch 1/ Metop-A 2011 spatial aliasing accounted for

11GRWG/GDWG Annual Meeting Tsukuba 29 Feb – 4 Mar 2016 GOME-2 FM3 Metop-A 2013 AVHRR channel 1 to GOME-2/Metop-A gain in reflectance <8% (AVHRR < GOME-2) see GSICS Quarterly Newsletters, vol 5, number 3, Latter et al. GOME-2 / AVHRR reflectance inter-calibration AVHRR ch 1/ Metop-A spatial aliasing accounted for

12GRWG/GDWG Annual Meeting Tsukuba 29 Feb – 4 Mar 2016 GOME-2 FM3 Metop-A GOME-2 Metop-A degradation component modelling Sahara – Reflectance Degradation / AVHRR ch1-domain Reflectance Degradation 600 nm 640 nm 680 nm Average over all GOME-2 viewing angles R2 campaign Jan 2007– Jan 2012 OPS phase (same PPF 5.3) Jan 2012 – Oct 2013

13GRWG/GDWG Annual Meeting Tsukuba 29 Feb – 4 Mar 2016 GOME-2 FM3 Metop-A GOME-2 Metop-A degradation component modelling Sahara – Reflectance Degradation / AVHRR ch1-domain Reflectance Degradation 640 nm Over all GOME-2 viewing angles at 2008/02/ /10/ /12/01 R2 campaign Jan 2007– Jan 2012 OPS phase (same PPF 5.3) Jan 2012 – Oct 2013

14GRWG/GDWG Annual Meeting Tsukuba 29 Feb – 4 Mar 2016 GOME-2 FM3 Metop-A AVHRR channel 1 to GOME-2/Metop-A gain in reflectance <8% (AVHRR < GOME-2) 2013 Corrected / Un-corrected see GSICS Quarterly Newsletters, vol 5, number 3, Latter et al. GOME-2/AVHRR reflectance inter-calibration AVHRR ch 1/ Metop-A spatial aliasing accounted for 2013

15GRWG/GDWG Annual Meeting Tsukuba 29 Feb – 4 Mar 2016 GOME-2 FM3 Metop-A AVHRR channel 1 to GOME-2/Metop-A gain in reflectance <8% (AVHRR < GOME-2) 2013 Corrected / Un-corrected see GSICS Quarterly Newsletters, vol 5, number 3, Latter et al. GOME-2/AVHRR reflectance inter-calibration AVHRR ch 1/ Metop-A spatial aliasing accounted for 2013

16GRWG/GDWG Annual Meeting Tsukuba 29 Feb – 4 Mar 2016 GOME-2 FM3 Metop-A GOME-2 FM2 Metop-B AOD / volcanic ash retrieval from two Metops – PMAp Multi-sensor aerosol properties retrieval using GOME-2 stokes fractions from PMDs PMAp: Aerosol Optical Depth and volcanic ash from GOME-2 (Polarisation Measurements) / IASI and AVHRR GOME-2 PMD - ground pixel sizes Metop-B: 10 by 40 km Metop-A: 5 by 40 km GOME-2 PMD AVHRR GOME-2 PMD IASI

17GRWG/GDWG Annual Meeting Tsukuba 29 Feb – 4 Mar 2016 PMAp – Multi-sensor co-location for aerosol optical depth retrievals Instru ment Spatial resolution Spectral rangecomments GOMEMain science channel 80 x 40 km240nm -800nm, res nm AAI, low spatial resolution, not used Polarization Monitoring Device 10 x 40 km Metop-B 5 x 40 km Metop-A 311nm-803nm, 15 bands AOD, aerosol type, AAI AVHRR-1.08 x 1.08 km580nm-12500nm, 5 bands Clouds, scene heterogeneity, dust/ash IASI-12km (circular)3700–15500nm, resolution 0.5 cm -1 desert dust, volcanic ash aerosol heights Auxiliary data ECMWF wind speed (forecasting) Temporal interpolation necessary -Required for retrievals over ocean surface albedo, Surface elevation --Required for retrievals over land Target spatial resolution GOME-2 FM3 Metop-A GOME-2 FM2 Metop-B

18GRWG/GDWG Annual Meeting Tsukuba 29 Feb – 4 Mar 2016 GOME-2 FM3 Metop-A GOME-2 FM2 Metop-B AVHRR collocation: an AVHRR pixel is collocated to a GOME- 2 PMD pixel if it is inside the GOME-2 pixel IASI collocation: a IASI pixel may span up to 6 GOME-2 PMD pixels. Which GOME-2 pixel should it be collocated to? Spatial aliasing due to read-out timing of detectors is taken into account! PMAp – Multi-sensor co-location for aerosol optical depth retrievals The GOME-2 PMD / AVHRR / IASI co-location

19GRWG/GDWG Annual Meeting Tsukuba 29 Feb – 4 Mar 2016 ChannelCentral wave- length[μm] Wavelength range [μm] A B PMAp – Multi-sensor co-location for aerosol optical depth retrievals Towards continuous calibration of AVHRR channels AVHRR channels For PMAp a consistent and continuous AVHRR – GOME-2/IASI radiometric inter-calibration is needed! AVHRR vs GOME-2: Use GOME-2 Main channels to calibrate AVHRR ch 1 and 2 (?) Correct PMDs using MSC GOME-2 PMD vs Main channels (MSC): Make PMDs consistent with main science channel radiances AVHRR vs IASI: Use IASI to calibrate AVHRR ch 3 to 5 1) 2) 3) GOME-2 FM3 Metop-A GOME-2 FM2 Metop-B

20GRWG/GDWG Annual Meeting Tsukuba 29 Feb – 4 Mar 2016 Summary GOME-2 inter-calibration (AVHRR/Seviri/PMAp) GOME-2 / Metop-A channel 3/4 vs AVHRR / Metop-A channel 1 Scale factor of 0.89 (2007 to 2011, 2011 to 2013 after correction of GOME-2 data, spatial aliasing accounted for by empirical correlation optimisation) GOME-2 / Metop-B channel 3/4 vs Seviri / MSG-3 channel 1 Scale factor of ~0.92 (see additional material) (2013, no correction of GOME-2 data, no spatial aliasing) PMAp: GOME-2/(IASI) AVHRR inter-calibration Towards continuous (operational) calibration for consistency with GOME-2 main science channels

21GRWG/GDWG Annual Meeting Tsukuba 29 Feb – 4 Mar 2016 Additional Material

22GRWG/GDWG Annual Meeting Tsukuba 29 Feb – 4 Mar 2016 GOME-2 Ch:3 (Band 5) 1024 measurements GOME-2 Ch:4 (Band 6) 1024 measurements Seviri ch1 response function GOME-2 / Seviri reflectance inter-calibration SEVIRI ch1/ MSG-2 – preliminary results GOME-2 FM3 Metop-A

23GRWG/GDWG Annual Meeting Tsukuba 29 Feb – 4 Mar 2016 Co-location of GOME-2 Metop-A with Seviri / MSG data. Spatial collocation: Average of all Seviri measurements (~4km) in one GOME-2 ground pixel (40 by 80 km) Temporal collocation: Within min of sensing time. No spatial aliasing correction GOME-2 FM3 Metop-A GOME-2 / Seviri reflectance inter-calibration SEVIRI ch1/ MSG-2 – preliminary results

24GRWG/GDWG Annual Meeting Tsukuba 29 Feb – 4 Mar 2016 GOME-2/Metop-B reflectance inter-calibration SEVIRI ch1/ MSG-3 – preliminary results GOME-2 FM2 Metop-B Reflectance MSG3 / Seviri Ch 1 1.5/1.5 degrees box at 0/0 o Reflectance GOME-2 / Metop-B 1.5/1.5 degrees box at 0/0 o Residual MSG-3 /Seviri vs GOME-2 / Metop-B [%] 1.5/1.5 degrees box at 0/0 o

25GRWG/GDWG Annual Meeting Tsukuba 29 Feb – 4 Mar 2016 GOME-2/Seviri reflectance inter-calibration SEVIRI ch1/ MSG-3 vs GOME-2/Metop-B – preliminary results GOME-2 FM2 Metop-B MSG-3 / Seviri ch 1 to GOME-2/Metop-B gain in reflectance ~8% (Seviri < GOME-2) 1 st Jan to 22 nd Nov 2013 * bi-weekly average

26GRWG/GDWG Annual Meeting Tsukuba 29 Feb – 4 Mar 2016 GOME-2/Metop-B reflectance inter-calibration SEVIRI ch1/ MSG-3 – preliminary results GOME-2 FM2 Metop-B No spatial aliasing correction yet No correlation with SZA found MSG-3 / Seviri ch 1 to GOME-2/Metop-B gain in reflectance ~8.5% (Seviri < GOME-2) 1 st Jan to 22 nd Nov 2013