1 1 מ חויבות ל מ צוינות - ג רעין להצלחה 200 kW Liquid Lithium Neutron Source G. Shimel, A. Arenshtam, I. Eliyahu, A. Kreisel, I. Silverman 6 th High Power.

Slides:



Advertisements
Similar presentations
Investigation of Proton Irradiation-Induced Creep of Ultrafine Grain Graphite Anne A. Campbell & Gary S. Was University of Michigan Research Supported.
Advertisements

Lithium Free-Surface Flow and Wave Experiments H.Horiike 1), H.Kondo 1), H.Nakamura 2), S.Miyamoto 1), N.Yamaoka 1), T.Muroga 3) 1) Graduate School of.
1 SARAF SAR AF SARAF – S oreq A pplied R esearch A ccelerator F acility NUPECC Meeting 08 June, 2013, Florence, Italy Soreq Israel Mardor Soreq NRC, Yavne,
Assessment of beam-target interaction of IFMIF A state of the art J. Knaster a, D. Bernardi b, A. García c, F. Groeschel h, R. Heidinger d, M. Ida e, A.
Japan-US Workshop held at San Diego on April 6-7, 2002 How can we keep structural integrity of the first wall having micro cracks? R. Kurihara JAERI-Naka.
for a neutrinos factory
Institute for Nuclear and Energy Technologies 1 L. Stoppel, Th. Wetzel FAIR and IFMIF liquid metal free surface target experiments at KALLA KALLA KIT –
Status of T2K Target 2 nd Oxford-Princeton High-Power Target Workshop 6-7 th November 2008 Mike Fitton RAL.
FETS-HIPSTER (Front End Test Stand – High Intensity Proton Source for Testing Effects of Radiation) Proposal for a new high-intensity proton irradiation.
Current status of the liquid lithium target development LiLiT Team presented by S. Halfon 4 th High-Power Targetry Workshop May 3,
ISIS Second Target Station
Martin Freer Materials Irradiation at University of Birmingham.
High-Power Density Target Design and Analyses for Accelerator Production of Isotopes W. David Pointer Argonne National Laboratory Nuclear Engineering Division.
Installation and Commissioning of the Soreq Applied Research Accelerator Facility A. Nagler 1, D. Berkovits 1, Y. Buzaglo 1, I. Gertz 1, A. Grin 1, I.
Study of a new high power spallation target concept
A NON LINEAR TRANSPORT LINE FOR THE OPTIMIZATION OF F18 PRODUCTION BY THE TOP LINAC INJECTOR C. Ronsivalle, L. Picardi, C. Cianfarani, G. Messina, G.L.
1 1 מ חויבות ל מ צוינות - ג רעין להצלחה BNCT and other studies at Soreq EuCARD2 kickoff meeting Ido Silverman for SARAF team 14/6/2013.
Compton/Linac based Polarized Positrons Source V. Yakimenko BNL IWLC2010, Geneva, October 18-22, 2010.
The Proposed Materials Test Station at LANSCE Eric Pitcher Los Alamos National Laboratory Presented at the Workshop on High-Power Targetry for Future.
BNL E951 BEAM WINDOW EXPERIENCE Nicholas Simos, PhD, PE Neutrino Working Group Brookhaven National Laboratory.
Radioactive ion beam production at other facilities
Alexander Aleksandrov Oak Ridge National Laboratory
Calculation of Beam loss on foil septa C. Pai Brookhaven National Laboratory Collider-Accelerator Department
Beam test possibilities at JINR and Fermilab V. Pronskikh Fermilab 02/15/2012.
HWDB: Operations at the Spallation Neutron Source Workshop on Accelerator Operations August 6-10, 2012 Glen D. Johns Accelerator Operations Manager.
Beam line Experiment area SC magnet Pion production target
Solid Targets for Neutron Spallation Sources Eric Pitcher Los Alamos National Laboratory Presented to: AHIPA Workshop October 20, 2009.
Development of tritium breeder monitoring for Lead-Lithium cooled ceramic breeder (LLCB) module of ITER presented V.K. Kapyshev CBBI-16 Portland, Oregon,
1 mm 1.5 mm 2 mm 0.5 mm 1.5 mm ABSTRACT Within the framework of fusion technology research and development, a neutron source has long been considered a.
Paul Scherrer Institut
B. Azadegan, S. A. Mahdipour Hakim Sabzevari University
Mitglied der Helmholtz-Gemeinschaft Jörg Wolters, Michael Butzek Focused Cross Flow LBE Target for ESS 4th HPTW, Malmö, 3 May 2011.
Neutron exposure at CERN Mitsu KIMURA 19 th July 2013.
Energy recovery linacs for commercial radioisotope production A. Sy, G. Krafft, V. S. Morozov, R. P. Johnson, T. Roberts, C. Boulware, J. Hollister May.
The International Workshop on Thin Films. Padova 9-12 Oct of slides Present Status of the World- wide Fusion Programme and possible applications.
Present status of production target and Room design Takashi Hashimoto, IBS/RISP 2015, February.
NPA5, Eilat 7/4/20117/4/2011 Apparatus for intense 8 Li RIB production experiment at SARAF Phase I Tsviki Y. Hirsh 1.
A. FaccoEURISOL DS Orsay, 3 Feb 2005 Task 7 Proton Accelerator “The objective of the Proton Accelerator Task is the design a 5 mA CW, 1 GeV proton linac.
Development of Cryogenic Moderators Using a Small Proton Accelerator Yoshiaki Kiyanagi*, Fujio Hiraga, Takashi Kamiyama, Akira Homma, Fumiyuki Fujita and.
Design for a 2 MW graphite target for a neutrino beam Jim Hylen Accelerator Physics and Technology Workshop for Project X November 12-13, 2007.
HPT & M/D I WG DISCUSSION SLIDES PASI 2012 Hurh et al.
Liquid targets for positron production - ??? Jerry Nolen Physics Division, Argonne National Laboratory POSIPOL Workshop Argonne National Laboratory September.
EURISOL, TASK#5, Bucuresti, November 1 Preliminary shielding assessment of EURISOL Post Accelerator D. Ene, D. Ridikas. B. Rapp.
The ESS Target Station Eric Pitcher Head of Target Division February 19, 2016.
Design and Optimisation of the ISIS TS1 Upgrade Target Dan Wilcox High Power Targets Group, RAL 6 th High Power Targetry Workshop, 12/04/2016.
The ESS Target Station F. Mezei ESS target division NPPatLPS, 2013.
Hanna Frånberg Delahaye Radioactive beam production
ISIS TS1 Project: Target Design and Analysis
Study on IFMIF Beam-Target Interface
UNILAC requirements for BIOPHYSICS research
The BLAIRR Irradiation Facility Hybrid Spallation Target Optimization
National Research Center” Kurchatov Institute”
M. Tomut GSI Helmholtzzentrum für Schwerionenforschung
Jeong-Jeung Dang, Kyoung-Jae Chung, Y. S. Hwang *
Tungsten Powder Test at HiRadMat Scientific Motivation
Cross-section Measurements of (n,xn) Threshold Reactions
Physics design on Injector-1 RFQ
LIPAc Control System Reliability improvements
Advanced-Fusion Neutron Source
Light Radioactive Beam Production via Two Stage Irradiation Setup
PSI’s high intensity proton accelerator – an overview Mike Seidel, PSI
Superbeams with SPL at CERN
EffiCAS Efficient Facility for Ions at CAS
CEPC RF Power Sources System
LOW-POWER RESEARCH REACTOR FOR EDUCATION AND TRAINING
Benoît Brichard Instrumentation Department Tel: Secr: Fax: Ooms Hans
Lithium lens and window tests
Beam dump for J-Parc neutrino facility
ACCSYS Collaboration Board Triestre, 3rd october 2017
RF system for MEIC Ion Linac: SRF and Warm Options
Presentation transcript:

1 1 מ חויבות ל מ צוינות - ג רעין להצלחה 200 kW Liquid Lithium Neutron Source G. Shimel, A. Arenshtam, I. Eliyahu, A. Kreisel, I. Silverman 6 th High Power Targetry Workshop 11-15/4/2015, Oxford, England

2 2 מ חויבות ל מ צוינות - ג רעין להצלחה Talk Layout  Soreq Applied research Accelerator Facility (SARAF)  Conceptual design of the Thermal Neutron Source (TNS) & convertor options  SARAF experience with a liquid lithium neutron source  A very preliminary design of a 200 kW liquid lithium neutron source

3 3 מ חויבות ל מ צוינות - ג רעין להצלחה Background  Soreq nuclear reactor (IRR-1) is in operation since 1961  It provides:  Neutron radiography  Neutron diffraction  Samples irradiation  Soreq infrastructure should be modernized to support experimental nuclear physics research in Israel Jerusalem Tel-Aviv

4 4 מ חויבות ל מ צוינות - ג רעין להצלחה SARAF Layout RF Superconducting Linear AcceleratorTarget Hall A. Nagler et al., LINAC 2006 and LINAC 2008 N. Pichoff, EPAC2015 Phase I Phase II

5 5 מ חויבות ל מ צוינות - ג רעין להצלחה Accelerator Basic Characteristics A RF Superconducting Linear Accelerator CommentValueParameter M/q ≤ 2Protons/DeuteronsIon Species 5 – 40 MeVEnergy Range Phase I - 2 mA0.04 – 5 mACurrent Range PW: ms; rep. rate: Hz CW and PulsedOperation mode 6000 hours/yearOperation 90%Reliability beam loss < 1 nA/mHands-OnMaintenance

6 6 מ חויבות ל מ צוינות - ג רעין להצלחה SARAF Phase-I Accelerator L. Weissman, Linac 2010 D. Berkovits, Linac 2012 A. Kreisel, Linac 2014 L. Weissman, WAO 2014 MeVmA p41 CW p22 CW d5.61*10%

7 7 מ חויבות ל מ צוינות - ג רעין להצלחה Conceptual system design קו קרן Raster דיפרקטומטר מקור ניטרונים TNR Diffractometer Thermal neutron source 7 Li(d,xn) beam 6 m beam raster concrete shield diffractometer collimator L/D=250 image plane 2 m heavy concrete shield collimator

8 8 מ חויבות ל מ צוינות - ג רעין להצלחה Available technologies for neutron converter design LithiumBerylliumCarbonTarget design Birmingham BNCT, BINP LENS, SPESSPIRAL-IStatic ?ESS-BILBAOFRIB, SPIRAL-IIRotating IFMIF, LiLiTXXLiquid DrawbacksAdvantagesTarget design High heat flux, Radiation damage, Large neutron source SimpleStatic Complex mechanism, Reduced neutron conversion efficiency Low thermal stress, Low radiation damage density Rotating Complex system, Only for lithium Low thermal stress, Low radiation damage Small neutron source Liquid

9 9 מ חויבות ל מ צוינות - ג רעין להצלחה A liquid lithium jet target - LiLiT tested at SARAF beam corridor Scrubber port Containment Graphite fire extinguisher Beam diagnostic Beam Measured: Li jet velocity 7 m/s Maximum power density 1 MW/cm 4 m/s 2x MeV protons M. Paul (HUJI) S. Halfon et al.: ARI 69(2011)1654 AIP 1525 (2013)511 RSI 84(2013) RSI 85(2014) ARI 88(2014)238 M. Paul et al.: POS (2014) 059 J.RNC (2015)

10 מ חויבות ל מ צוינות - ג רעין להצלחה Liquid Lithium Target - LiLiT  Proton energy: ~2 MeV  Proton current: <3.5 mA  T ≈ C  T max ≈ C  Operating at SARAF since 10/2013 Jet: 18 mm x 1.5 mm Lithium velocity: 20 m/s Wall assisted lithium jet Jet chamber liquid lithium beam S. Halfon et al., Review of Scientific Instruments 84, (2013).

11 מ חויבות ל מ צוינות - ג רעין להצלחה LiLiT installation at SARAF Beam S. Halfon et al., Review of Scientific Instruments 85, (2014).

12 מ חויבות ל מ צוינות - ג רעין להצלחה LiLiT thermal model Temperature distribution at the center of the jet Flow direction Beam

13 מ חויבות ל מ צוינות - ג רעין להצלחה Liquid lithium free surface proton irradiation P beam, 1.81 MeV, ~1 mA Lithium flow Proton beam Emissivity -  Li =  SS = Side plates with thermocouples

14 מ חויבות ל מ צוינות - ג רעין להצלחה Measured lithium temperature Beam position on target Thermal track 1.5 mA Protons beam at 1.92 MeV Beam power ~3 kW Beam size, σ=2.5 mm Calculated heat-up 200 o C Measured ~ 50 o C(±50)

15 מ חויבות ל מ צוינות - ג רעין להצלחה Available technologies for neutron converter design LithiumBerylliumCarbonTarget design Birmingham BNCT, BINP LENS, SPESSPIRAL-IStatic ?ESS-BILBAOFRIB, SPIRAL-IIRotating IFMIF, LiLiTXXLiquid DrawbacksAdvantagesTarget design High heat flux, Radiation damage, Large neutron source SimpleStatic Complex mechanism, Reduced neutron conversion efficiency Low thermal stress, Low radiation damage density Rotating Complex system, Only for lithium Low thermal stress, Low radiation damage Small neutron source Liquid

16 מ חויבות ל מ צוינות - ג רעין להצלחה Neutron Convertor Specifications UnitValueParameter -DParticle MeV40Energy mA5Current kW200Power mm19Range

17 מ חויבות ל מ צוינות - ג רעין להצלחה Estimated operating limitation Flow Beam Evaporation rate [gr/cm 2 *hr] Simulation parameters: Q 200 kW U 5 m/s  4 mm Simulation parameters: Q 200 kW U 5 m/s  4 mm

18 מ חויבות ל מ צוינות - ג רעין להצלחה Estimated operating envelope * Y. Momozaki, HPTW3, 2007

19 מ חויבות ל מ צוינות - ג רעין להצלחה Required target parameters UnitValueParameter mm22-25Thickness mm50Width mm8 Max. beam size  mm4 Min. beam size  m/s5Velocity l/min375Flow rate l200Li inventory

20 מ חויבות ל מ צוינות - ג רעין להצלחה Target system layout Machines room Target & moderator Exp. hall Beam line Exp. hall EMP Li tank & Heat exchanger Beam line Moderator Target Beam line Target Diffractometer Radiography Samples irradiation

21 מ חויבות ל מ צוינות - ג רעין להצלחה Summary  SARAF phase-II facility will include a n/s thermal neutron source  The design is based on a 200 kW liquid lithium target for 40 MeV deuterons beam  Design choices for target has been reviewed based on:  Short and long term failure modes  System requirements  R&D risk analysis

22 מ חויבות ל מ צוינות - ג רעין להצלחה End

23 מ חויבות ל מ צוינות - ג רעין להצלחה Target fail modes review – R&D risks  Short term fail modes  Target cooling  Mechanical loads  Medium\ Long term fail modes  Radiation damage – limited knowledge, difficult to evaluate  Mechanical reliability  Radiation safety

24 מ חויבות ל מ צוינות - ג רעין להצלחה Micro-channels cooling of a solid target Proposed 80 kW micro-channels cooled neutron source (size 100x100 mm 2 ) and prototype test section (channel width 0.2 mm, made of Aluminum) H. Hirshfeld et al., NIM A 562(2006)

25 מ חויבות ל מ צוינות - ג רעין להצלחה Micro-channels cooling – experimental results Measured wall temperature above coolant temperature as function of heating power flux for two flow rate. Distinctive change in heat transfer capability can be noticed at power flux of about 600 W/cm 2. Stable operation has been achieved for heating power of up to 1400 W/cm 2 Start of boiling

26 מ חויבות ל מ צוינות - ג רעין להצלחה Radiation damage from high current low energy proton beam  Irradiation of solid targets cause fast accumulation of hydrogen gas at traps close to the targets surface (depth < 100 μm)  Unless released or chemically locked, the gas bubbles may fracture the target SARAF phase-I Tungsten beam dump after irradiation by X mA*hr protons at Y MeV

27 מ חויבות ל מ צוינות - ג רעין להצלחה Radiation damage in Be thick targets Design studies for ESS-BILBAO neutronic applications laboratory ESS-BILBAO Target Group ESS-B rotESS-BLENS Avg. Intensity [mA] Operation time [hr] 4.518Implantation [a/cm 3 ] Life time estimation regarding gas implantation 50 MeV p beam