Enhancing Migration Image Quality by 3-D Prestack Migration Deconvolution Gerard Schuster Jianhua Yu, Jianxing Hu University of Utah andGXT 1 2 2 1 1 2.

Slides:



Advertisements
Similar presentations
Geological Model Depth(km) X(km) 2001 Year.
Advertisements

Selecting Robust Parameters for Migration Deconvolution University of Utah Jianhua Yu.
Prestack Migration Deconvolution Jianxing Hu and Gerard T. Schuster University of Utah.
Depth (m) Time (s) Raw Seismograms Four-Layer Sand Channel Model Midpoint (m)
Specular-Ray Parameter Extraction and Stationary Phase Migration Jing Chen University of Utah.
Wavepath Migration versus Kirchhoff Migration: 3-D Prestack Examples H. Sun and G. T. Schuster University of Utah.
Overview of Some Coherent Noise Filtering Methods Overview of Some Coherent Noise Filtering Methods Jianhua Yue, Yue Wang, Gerard Schuster University.
Wave-Equation Interferometric Migration of VSP Data Ruiqing He Dept. of Geology & Geophysics University of Utah.
Wave-Equation Interferometric Migration of VSP Data Ruiqing He Dept. of Geology & Geophysics University of Utah.
Primary-Only Imaging Condition Yue Wang. Outline Objective Objective POIC Methodology POIC Methodology Synthetic Data Tests Synthetic Data Tests 5-layer.
Solving Illumination Problems Solving Illumination Problems in Imaging:Efficient RTM & in Imaging:Efficient RTM & Migration Deconvolution Migration Deconvolution.
TARGET-ORIENTED LEAST SQUARES MIGRATION Zhiyong Jiang Geology and Geophysics Department University of Utah.
CROSSWELL IMAGING BY 2-D PRESTACK WAVEPATH MIGRATION
3-D Migration Deconvolution Jianxing Hu, GXT Bob Estill, Unocal Jianhua Yu, University of Utah Gerard T. Schuster, University of Utah.
Improve Migration Image Quality by 3-D Migration Deconvolution Jianhua Yu, Gerard T. Schuster University of Utah.
Joint Migration of Primary and Multiple Reflections in RVSP Data Jianhua Yu, Gerard T. Schuster University of Utah.
Arbitrary Parameter Extraction, Stationary Phase Migration, and Tomographic Velocity Analysis Jing Chen University of Utah.
Overview of Utah Tomography and Modeling/Migration (UTAM) Chaiwoot B., T. Crosby, G. Jiang, R. He, G. Schuster, Chaiwoot B., T. Crosby, G. Jiang, R. He,
Migration and Attenuation of Surface-Related and Interbed Multiple Reflections Zhiyong Jiang University of Utah April 21, 2006.
Salt Flank Delineation by Interferometric Imaging of Transmitted P-to-S Waves Xiang Xiao Advisor: Gerard T. Schuster Committee: Michael Zhdanov Bob Smith.
Kirchhoff vs Crosscorrelation
Autocorrelogram Migration of Drill-Bit Data Jianhua Yu, Lew Katz, Fred Followill, and Gerard T. Schuster.
Stabilization of Migration Deconvolution Jianxing Hu University of Utah.
Local Migration with Extrapolated VSP Green’s Functions Xiang Xiao and Gerard Schuster Univ. of Utah.
Midyear Overview of Year 2001 UTAM Results T. Crosby, Y. Liu, G. Schuster, D. Sheley, J. Sheng, H. Sun, J. Yu and M. Zhou J. Yu and M. Zhou.
3-D PRESTACK WAVEPATH MIGRATION H. Sun Geology and Geophysics Department University of Utah.
Migration Deconvolution vs Least Squares Migration Jianhua Yu, Gerard T. Schuster University of Utah.
1 Fast 3D Target-Oriented Reverse Time Datuming Shuqian Dong University of Utah 2 Oct
MD + AVO Inversion Jianhua Yu, University of Utah Jianxing Hu GXT.
3-D Migration Deconvolution: Real Examples Jianhua Yu University of Utah Bob Estill Unocal.
Interferometric Multiple Migration of UPRC Data
Autocorrelogram Migration for Field Data Generated by A Horizontal Drill-bit Source Jianhua Yu, Lew Katz Fred Followill and Gerard T. Schuster.
4C Mahogony Data Processing and Imaging by LSMF Method Jianhua Yu and Yue Wang.
Prestack Migration Deconvolution in Common Offset Domain Jianxing Hu University of Utah.
Multisource Least-squares Reverse Time Migration Wei Dai.
3D Wave-equation Interferometric Migration of VSP Free-surface Multiples Ruiqing He University of Utah Feb., 2006.
V.2 Wavepath Migration Overview Overview Kirchhoff migration smears a reflection along a fat ellipsoid, so that most of the reflection energy is placed.
Angle-domain Wave-equation Reflection Traveltime Inversion
Seeing the Invisible with Seismic Interferometry: Datuming and Migration Gerard T. Schuster, Jianhua Yu, Xiao Xiang and Jianming Sheng University of Utah.
Least Squares Migration of Stacked Supergathers Wei Dai and Gerard Schuster KAUST vs.
Coherence-weighted Wavepath Migration for Teleseismic Data Coherence-weighted Wavepath Migration for Teleseismic Data J. Sheng, G. T. Schuster, K. L. Pankow,
Migration Deconvolution of 3-D Seismic Data Jianxing Hu (University of Utah) Paul Valasek (Phillips Petroleum Company)
Impact of MD on AVO Inversion
New Migration Deconvolution Filters Jianhua Yu University of Utah.
Prestack Migration Intuitive Least Squares Migration Green’s Theorem.
Review of Coherent Noise Suppression Methods Gerard T. Schuster University of Utah.
Multisource Least-squares Migration of Marine Data Xin Wang & Gerard Schuster Nov 7, 2012.
Interferometric Interpolation of 3D SSP Data Sherif M. Hanafy Weiping Cao Gerard T. Schuster October 2009.
Fast Least Squares Migration with a Deblurring Filter Naoshi Aoki Feb. 5,
Wave-Equation Migration in Anisotropic Media Jianhua Yu University of Utah.
Super-virtual Interferometric Diffractions as Guide Stars Wei Dai 1, Tong Fei 2, Yi Luo 2 and Gerard T. Schuster 1 1 KAUST 2 Saudi Aramco Feb 9, 2012.
Migration Velocity Analysis of Multi-source Data Xin Wang January 7,
3-D Prestack Migration Deconvolution Bob Estill ( Unocal) Jianhua Yu (University of Utah)
 = 0.5  j  r j (  kk’ (  m kk’ /  z) 2  m ii’ =  j  r j  r j /  m ii’ + (  kk’  m kk’ /  m ii’  m kk’ /  z) (1) m 11 m 12.
Fast Least Squares Migration with a Deblurring Filter 30 October 2008 Naoshi Aoki 1.
Fast 3D Least-squares Migration with a Deblurring Filter Wei Dai.
Jianhua Yu University of Utah Robust Imaging for RVSP Data with Static Errors.
MD+AVO Inversion: Real Examples University of Utah Jianhua Yu.
Interpolating and Extrapolating Marine Data with Interferometry
Zero-Offset Data d = L o ò r ) ( g = d dr r ) ( g = d
Reverse Time Migration
Primary-Only Imaging Condition And Interferometric Migration
4C Mahogony Data Processing and Imaging by LSMF Method
Skeletonized Wave-Equation Surface Wave Dispersion (WD) Inversion
Interferometric Least Squares Migration
Overview of Multisource and Multiscale Seismic Inversion
Han Yu, Bowen Guo*, Sherif Hanafy, Fan-Chi Lin**, Gerard T. Schuster
Review of Coherent Noise Suppression Methods
LSMF for Suppressing Multiples
Least Squares Migration
Presentation transcript:

Enhancing Migration Image Quality by 3-D Prestack Migration Deconvolution Gerard Schuster Jianhua Yu, Jianxing Hu University of Utah andGXT

Blurring Problems in Migration Outline Migration Deconvolution Examples Conclusions

Outline Migration Deconvolution Examples Conclusions Blurring Problems in Migration

Migration noise and artifacts Migration Noise Problems Depth (km) Weak illumination Footprint

m = L d T Migration = Blurred r but d = L  Migrated Section DataModeling

m = L T but d = L  Migrated Section L L L L  Migration Image m = True Reflectivity Model  Migration = Blurred r

Outline Migration Deconvolution Examples Conclusions Blurring Problems in Migration

Migration Deconvolution m  LLT Migration imageReflectivity  Migration Green’s function

m  LLT  LL T][ LL T][ 1 1 Migration Deconvolution

m   LL T][ 1

Assume Local v(z) Approximation m   LL T][ 1 Migration Deconvolution

m   LL T ][ r r 0  r,r  0 0 r ith column=ith pt scatterer Response to migration r 0 Migration Deconvolution r r 0 Pt. scatterer location Trial image pt. sgsoogsg rdrdrrGrrGrrGrrG)()()()( **  ][ Migration Green’s function (Schuster and Hu, 2000)

m   LL T ][ sgsoogsg rdrdrrGrrGrrGrrG)()()()( **  ][ Migration Green’s function (Schuster and Hu, 2000)  r,r  0 0 r r 0 Migration Deconvolution r r 0 r r 0 Special Case: r=r o e  gx e  sx e  gx e  sx |g-x| 2 |s-x| 2  |g-x| 2 |s-x| 2 xx = LL T ][ Preconditioner for LSM Pt. scatterer location Trial image pt.

MD Implementation Steps: Step 1: Prepare traveltime table Velocity cube Acquisition geometry information or Use migration timetable

Calculate the migration Green’s function MD Implementation Steps: Step 2: Y (km) Depth (km) m  r L L T ][ * N ithdepth L  r,r  0 r r r0

N Calculate the migration Green’s function for pts along vertical line MD Implementation Steps: Step 2: Y (km) L M  R ][ithdepth  r,r  0 r r r0

Calculate the migration Green’s function for pts along vertical line MD Implementation Steps: Step 2: Y (km) Depth (km) M  R ][ithdepth  r,r  0 r r 0

Calculate the migration Green’s function for pts along vertical line MD Implementation Steps: Step 2: Y (km) M  R ][ithdepth  r,r  0 r r 0

Calculate the migration Green’s function for pts along vertical line MD Implementation Steps: Step 2: Y (km) M  R ][ithdepth  r,r  0 r r 0

Step 3: FFT in x and y   ),0,0|,,( 0 zzyyxx oomig oooooo dzdzdydydxdxzyx R( ),,( Model Space ooomig rdrRrrrm)()()(   Model Space x-y shift invariance

Step 3: FFT in x and y   ),0,0|,,( 0 zzyyxx oomig oooooo dzdzdydydxdxzyx R ),,( Model Space FFT in x and y FFT in x and y ooomig rdrRrrrm)()()(   Model Space   ),0,0|,,( ~ ),,( ~ 0 zzkkzkk m yxyx ooyx dzdzzkkR),,( ~

Discrete MD Equation FFT of Migrateddata True Reflectivity Invert Blocks of 15x15 matrices for each k

Step 4: Invert MD image at the depth Z i by solving linear equations MD Implementation Steps: Step 5: Repeat Steps 2-4 until the maximum depth is finished M  R ][  (k, k, z  xy

Outline Migration Deconvolution Examples : Synthetic data Conclusions Blurring Problems in Migration

0 3 km 0 3-D Point Scatterer Model 3 km 11 X 11 Receivers 11 X 11 Receivers dxg=dyg=0.3 km Imaging: dx=dy=50 m dz=100 m 3X3 Sources; dxshot=dyshot=1.5 km 10 km

0 3 X (km) 0 3 Y (km) 0 3 X (km) 0 3 Y (km) 0 3 X (km) 0 3 Y (km) 0 3 X (km) 0 3 Y (km) 0 3 X (km) 0 3 Y (km) 0 3 X (km) 0 3 Y (km) MIG MD Z=1 km Z=3 km Z=5 km Depth Slices

0 3 X (km) 0 3 Y (km) 0 3 X (km) 0 3 Y (km) 0 3 X (km) 0 3 Y (km) 0 3 X (km) 0 3 Y (km) 0 3 X (km) 0 3 Y (km) 0 3 X (km) 0 3 Y (km) MIG MD Z=7 km Z=9 km Z=10 km Depth Slices

0 2.5 km 0 Meandering Stream Model 2.5 km 5 X 1 Sources; 11 X 7 Receivers 3.5 km

Mig MD Model 0 Y (km) X (km) Z=3.5 KM

Meandering River Model X (m) Y (m)

Kirchhoff Migration Image X (m) Y (m)

MD Image X (m) Y (m)

km 0 3-D SEG/EAGE Salt Model 12.2 km 9 X5 Sources; dxshot=dyshot=1 km 201 X 201 Receivers Imaging: dx=dy=20 m

3-D SEG/EAGE Salt Model X (km)Y (km) Y=7.12 km

Mig and MD ( z=1.4 km, negative polarity) X (km) 3 10 Y (km) X (km) MDMig

3-D SEG/EAGE Salt Model X (km)Y (km) Y=7.12 km

MD (z=1.2 km)Mig (z=1.2 km) X (km) 3 10 Y (km) X (km)

MD (z=1.2 km)Mig (z=1.2 km)

X (km) Depth (km) SIGSBEE2B Model

X (km) Depth (km) Wave Equation Migration Before MD

X (km) Depth (km) Wave Equation Migration after MD

Outline Migration Deconvolution Examples: 2-D field data Conclusions Blurring Problems in Migration

PSTM Image 0 6 X (km) 0 8 Time (s) MD PSTM Image

PSTM Image 0 6 X (km) 0 8 Time (s) MD PSTM Image

Outline Migration Deconvolution Examples: 3-D field data Conclusions Blurring Problems in Migration

3-D Land Field Data : Receivers : Sources

Unocal Alaska 3D Data 8 km 0 km 5 km

Kirchhoff Migration MD

Unocal Alaska 3D Data 8 km 0 km 5 km

Inline Number Depth (kft) 90Inline Number1 Kirchhoff MigrationMD (Crossline=50)

Unocal Alaska 3D Data 8 km 0 km 5 km

(crossline 200) Depth (kft) Kirchhoff MigrationMD

2.0 s MDStandard MD 1.2 s

Depth (kft) Crossline Number (Inline =50) Mig ( Unocal ) MD

Unocal Alaska 3D Data 8 km 0 km 5 km

Kirchhoff Migration MD Inline Number Crossline Number Inline Number 3 km

(3.08 kft) Inline Number Crossline Number Inline Number Mig (Courtesy of Unocal) MD

(3.6 kft) Inline Number Crossline Number Inline Number Mig (Courtesy of Unocal) MD

Outline Migration Deconvolution Examples Conclusions Blurring Problems in Migration

Conclusions MD = Least Squares Migration MD Improve resolution, suppresses mig. artifacts, balances illumination 2 km; km Sensitive to choice of filter parameters MD $$ = 1 Migration MD Problems MD effectiveness diminishes with depth Local V(z) Approximation

Gaussian Beam MD, WE MD MD Future Conjugate Gradient MD

10 Depth (km) After MD No AGC Before MD

5 10 Depth (km) Before MD After MD

0 6 X (km) 0 8 Time (s) MD

0 6 X (km) 0 8 Time (s) MD PSTM(courtesy of Unocal) PSTMD

0 6 X (km) 3 8 Time (s) MD

MD Time (s) Mig (courtesy of Aramco)

Time (s) Mig (Courtesy of Aramco)MD

Mig MD Mig MD

Fault

Purpose of MD Processing: Enhancing illumination Suppressing migration noise and artifacts Improving spatial resolution

Acknowledgements Aramco, Unocal, and Chevron- TexacoAramco, Unocal, and Chevron- Texaco UTAM sponsorsUTAM sponsors Bob Estill and George Yao (Unocal), Alan Leeds (ChevronTexaco)Bob Estill and George Yao (Unocal), Alan Leeds (ChevronTexaco)

Mig MD Model 0 Y (km) X (km) Z=3.5 KM

1.6 s Inline Crossline 3D PSTM (courtesy of Unocal) MD