Uncertainty in Measurement A digit that must be estimated is called uncertain. A measurement always has some degree of uncertainty.

Slides:



Advertisements
Similar presentations
Steps in the Scientific Method
Advertisements

Chemistry Chapter 2 MeasurementsandCalculations Steps in the Scientific Method 1.Observations - quantitative - qualitative 2.Formulating hypotheses -
Forensic Science.   Part 1 - number  Part 2 - scale (unit)  Examples:  20 grams  6.63 x Joule seconds Measurement - quantitative observation.
Measurement and Significant Figures
Measurement and Significant Figures
Uncertainty and Significant Figures Cartoon courtesy of Lab-initio.com.
Significant Figures Cartoon courtesy of Lab-initio.com
Copyright©2000 by Houghton Mifflin Company. All rights reserved. 1 CHEMISTRY 101  Textbook: Zumdahl, 6 th Edition.
Observation, Measurement and Calculations Cartoon courtesy of NearingZero.net.
Scientific Notation & Significant Figures in Measurement Dr. Sonali Saha Chemistry Honors Fall 2014.
Unit 0: Observation, Measurement and Calculations Cartoon courtesy of NearingZero.net.
MeasurementsandCalculations. Numbers Numbers in science are different than in math. Numbers in science always refer to something grams 12 eggs.
Chemistry Chapter 2 MeasurementsandCalculations. Steps in the Scientific Method 1.Observations - quantitative - qualitative 2.Formulating hypotheses -
Chapter 1 Introduction: Matter and Measurement. Steps in the Scientific Method 1.Observations - quantitative -  qualitative 2.Formulating hypotheses.
Significant Figures, Precision, and Accuracy. Significant Figures Significant figures are numbers that mean something when reporting a value. Just because.
Honors Chemistry I. Uncertainty in Measurement A digit that must be estimated is called uncertain. A measurement always has some degree of uncertainty.
Chapter 2: Scientific Method Cartoon courtesy of NearingZero.net.
Chemical Foundations. Steps in the Scientific Method 1. Observations -quantitative - qualitative 2.Formulating hypotheses - possible explanation for the.
Chemical Foundations. Steps in a Scientific Method (depends on particular problem) 1. Observations -quantitative - qualitative 2.Formulating hypotheses.
INTRODUCTION Matter And Measurement Steps in the Scientific Method 1.Observations - quantitative - qualitative 2.Formulating Hypotheses - possible explanation.
Measurement and Significant Figures
Copyright©2000 by Houghton Mifflin Company. All rights reserved. 1 Steps in the Scientific Method 1.Observations  quantitative  qualitative 2.Formulating.
Copyright©2000 by Houghton Mifflin Company. All rights reserved. 1 Steps in the Scientific Method 1.Observations  quantitative  qualitative 2.Formulating.
Chemistry Chapter 1 Introduction, Measurement, Introduction, Measurement, and Problem Solving and Problem Solving.
Measurements in Chemistry MeasurementsandCalculations.
1 Measurements. 2 Nature of Measurement Measurement - quantitative observation consisting of 2 parts Part 1 - number Part 2 - scale (unit) Part 2 - scale.
Chemical Foundations. Nature of Measurement Part 1 - number Part 2 - scale (unit) Examples: 20 grams 6.63 x Joule seconds Measurement - quantitative.
Section 5: Significant Figures Cartoon courtesy of Lab-initio.com Unit 1: Matter & Measurement.
The SI System of Measurement
Unit 0: Observation, Measurement and Calculations Cartoon courtesy of NearingZero.net.
Chemical Foundations 1. Nature of Measurement Part 1 - number Part 2 - scale (unit) Examples: 20 grams 6.63 x Joule seconds Measurement - quantitative.
Scientific Notation & Significant Figures in Measurement.
“Scientific Measurement”. Measurements and Their Uncertainty OBJECTIVES: Convert measurements to scientific notation.
Uncertainty in Measurement A digit that must be estimated is called uncertain. A measurement always has some degree of uncertainty. Significant figures.
Copyright©2000 by Houghton Mifflin Company. All rights reserved. 1 Steps in the Scientific Method 1.Observations  quantitative  qualitative 2.Formulating.
Uncertainty and Significant Figures Cartoon courtesy of Lab-initio.com.
Uncertainty in Measurement A digit that must be estimated is called uncertain. A measurement always has some degree of uncertainty.
Ms. D CHEMISTRY Determining Significant Figures. Uncertainty in Measurement A digit that must be estimated is called uncertain. A measurement always has.
Unit 0: Observation, Measurement and Calculations Cartoon courtesy of NearingZero.net.
Steps in the Scientific Method 1.Observations - quantitative - qualitative 2.Formulating hypotheses - possible explanation for the observation 3.Performing.
Unit 3: Measurement and Calculations Cartoon courtesy of NearingZero.net.
1 Book Website istry/7e/student_home.html.
Unit 0: Observation, Measurement and Calculations
Uncertainty and Significant Figures
Uncertainty and Significant Figures
Scientific Measurement
Chemical Foundations.
Unit 3: Measurement and Calculations
Uncertainty and Significant Figures
Measurement and Significant Figures
Math Toolkit ACCURACY, PRECISION & ERROR.
Uncertainty and Significant Figures
Measurement and Significant Figures
Chemical Foundations.
Book Website
Section 2.3 Uncertainty in Data
Chapter 2.1: Measurements & Calculations West Valley High School
Uncertainty and Significant Figures
Chemistry Chapter 2 Measurements and Calculations Notes 2.
Uncertainty and Significant Figures
Measurements and Calculations.
Uncertainty and Significant Figures
Uncertainty and Significant Figures
What are the SI base units for time, length, mass, and temperature?
Steps in the Scientific Method
Uncertainty and Significant Figures
Steps in the Scientific Method
Chapter 2A: Measurements & Calculations West Valley High School
Presentation transcript:

Uncertainty in Measurement A digit that must be estimated is called uncertain. A measurement always has some degree of uncertainty.

Precision and Accuracy Accuracy refers to the agreement of a particular value with the true value. Precision refers to the degree of agreement among several measurements made in the same manner. Neither accurate nor precise Precise but not accurate Precise AND accurate

Types of Error Random Error (Indeterminate Error) - measurement has an equal probability of being high or low. Systematic Error (Determinate Error) - Occurs in the same direction each time (high or low), often resulting from poor technique or incorrect calibration.

Why Is there Uncertainty?  Measurements are performed with instruments  No instrument can read to an infinite number of decimal places Which of these balances has the greatest uncertainty in measurement?

Rules for Counting Significant Figures - Details Nonzero integers always count as significant figures has 4 sig figs.

Rules for Counting Significant Figures - Details Zeros - Leading zeros do not count as significant figures has 3 sig figs.

Rules for Counting Significant Figures - Details Zeros - Captive zeros always count as significant figures has 4 sig figs.

Rules for Counting Significant Figures - Details Zeros Trailing zeros are significant only if the number contains a decimal point has 4 sig figs.

Rules for Counting Significant Figures - Details Exact numbers have an infinite number of significant figures. 1 inch = 2.54 cm, exactly

Atlantic Pacific Rule Atlantic Pacific Rule 1. If decimal is Present, count from the Pacific starting with the first nonzero digit. 2. If decimal is Absent, count from the Atlantic starting with the first non zero digit.

PacificAtlantic (Decimal present)(Decimal absent) 1) )765,300 1)3 2)4

Sig Fig Practice #1 How many significant figures in each of the following? m  5 sig figs kg  4 sig figs 100,890 L  5 sig figs 3.29 x 10 3 s  3 sig figs cm  2 sig figs 3,200,000  2 sig figs

Rules for Significant Figures in Mathematical Operations Multiplication and Division: # sig figs in the result equals the number in the least precise measurement used in the calculation x 2.0 =  13 (2 sig figs)

Sig Fig Practice # m x 7.0 m CalculationCalculator says:Answer m 2 23 m g ÷ 23.7 cm g/cm g/cm cm x cm cm cm m ÷ 3.0 s m/s240 m/s lb x 3.23 ft lb·ft 5870 lb·ft g ÷ 2.87 mL g/mL2.96 g/mL

Rules for Significant Figures in Mathematical Operations Addition and Subtraction: The number of decimal places in the result equals the number of decimal places in the least precise measurement =  18.7 (3 sig figs)

Sig Fig Practice # m m CalculationCalculator says:Answer m 10.2 m g g g 76.3 g 0.02 cm cm cm 2.39 cm L L L709.2 L lb lb lb lb mL mL 0.16 mL mL

Outcomes Over the Long-Term Theory (Model) - A set of tested hypotheses that give an overall explanation of some natural phenomenon. overall explanation of some natural phenomenon. Natural Law - The same observation applies to many different systems different systems - Example - Law of Conservation of Mass

Law vs. Theory A law summarizes what happens  A law summarizes what happens  A theory (model) is an attempt to explain why it happens.

Nature of Measurement Part 1 - number Part 2 - scale (unit) Examples: 20 grams 6.63 x Joule seconds Measurement - quantitative observation consisting of 2 parts consisting of 2 parts

Steps in the Scientific Method 1.Observations - quantitative - qualitative 2.Formulating hypotheses - possible explanation for the observation 3.Performing experiments - gathering new information to decide whether the hypothesis is valid whether the hypothesis is valid

The Fundamental SI Units (le Système International, SI)

SI Prefixes Common to Chemistry PrefixUnit Abbr.Exponent Kilok10 3 Decid10 -1 Centic10 -2 Millim10 -3 Micro  10 -6

Derived SI Units Derived-combo of standard base units produced by either multiplying of dividing. Quantitysymbolunit abbrev. Derivation AreaAm² length x width VolumeVm³l x w x h DensityDkg/m³mass/volume

Volume- amount space occupied by an object *units used in the laboratory 1m³= 1,ooo,ooocm³ L= 1000cm³ 1000mL= 1L 1000cm³= 1000mL *cm³ and mL are interchangeable

Density- ratio of mass to volume Density = Mass Volume base unit mass=kg base unit volume=m³ kg/m³g/cm³g/mL DV M

Calculate 1. What is the density of a block of marble that occupies 310cm³ and has a mass of 853g? Answer-2.8 g/cm³

2. Diamond has a density of 3.26g/cm³. what is the mass of a diamond that has a volume of 0.35cm³? Answer-1.1 g

Conversion Factors A ratio derived from the equality between two different units that can be used to convert from one unit to the other.

4 quarters=11 dollar=10.25 dollar=1 1 dollar4quaters1 quarter *Quantity sought=quantity given x conversion factor

How many quarters are in twelve dollars? # of quarters = 12 dollars x conversion factor ? Quarters = 12 dollars4 quarters 1 dollar = 48 quarters

What is the price of a piece of copper Wire 325cm long that sells for $.15/ft? 1 in = 2.54cm