High-energy Neutrino Astrophysics with IceCube Neutrino Observatory

Slides:



Advertisements
Similar presentations
Reso Shanidze 1 Theoretical Bounds and Current Experimental Limits on the Diffuse Neutrino Flux Rezo Shanidze 17/06/2004 Seminar zu aktuellen.
Advertisements

The IceCube Neutrino Telescope Kyler Kuehn Center for Cosmology and AstroParticle Physics The Ohio State University Novel Searches for Dark Matter CCAPP.
EHE Neutrino Search with the IceCube Aya Ishihara The University of Wisconsin - Madison for the EHE Verification working group.
The IceCube Neutrino Observatory To Explore the EHE Universe Shigeru Yoshida The Chiba University The Baseline Performance.
The IceCube Neutrino Telescope Project overview and Status EHE Physics Example: Detection of GZK neutrinos TAUP2003 Shigeru Yoshida, Chiba University.
M. Kowalski Search for Neutrino-Induced Cascades in AMANDA II Marek Kowalski DESY-Zeuthen Workshop on Ultra High Energy Neutrino Telescopes Chiba,
IceCube.
SUSY06, June 14th, The IceCube Neutrino Telescope and its capability to search for EHE neutrinos Shigeru Yoshida The Chiba University (for the IceCube.
Search for Extremely-high Energy Cosmic Neutrino with IceCube Chiba Univ. Mio Ono.
EHE Lepton Propagation in the Earth and Its Implications to the IceCube EHE  Propagation in the Earth EHE  Propagation in the Earth What is the.
The IceCube High Energy Telesope The detector elements Expected Sensitivity Project Status Shigeru Yoshida Dept. of Physics CHIBA Univ. ICRC 2003.
Neutrino Astronomy at the South Pole David Boersma UW Madison “New Views of the Universe” Chicago, 10 December 2005.
1. Introduction 2. IceCube Detector 3. Neutrino Detection Principles 4. Status of the Construction and Performance 5. Summary IceCube neutrino
EHE Search for EHE neutrinos with the IceCube detector Aya Ishihara for the IceCube collaboration Chiba University.
Per Olof Hulth Stockholm university1 NSF Review March 25-27, 2003 Introductory remarks Per Olof Hulth Stockholm university.
IceCube 40Point Source AnalysisResultsConclusions Search for neutrino point sources with the IceCube Neutrino Observatory Menlo Park, California TeVPA.
IceCube S Robbins University of Wuppertal Moriond - “Contents and Structures of the Universe” La Thuile, Italy, March 2006 Outlook for Neutrino Detection.
TeV Particle Astrophysics II 1 Are there EHE signals? Shigeru Yoshida.
Frontiers in Contemporary Physics: May 23, 2005 Recent Results From AMANDA and IceCube Jessica Hodges University of Wisconsin – Madison for the IceCube.
AMANDA Results from the AMANDA neutrino telescope Carlos P. de los Heros Department of High Energy Physics Uppsala University.
First Results from IceCube Physics Motivation Hardware Overview Deployment First Results Conclusions & Future Plans Spencer Klein, LBNL for the IceCube.
Neutrino Astronomy at the South Pole David Boersma UW Madison Lake Louise Winter Institute Chicago, 23 February 2006.
CIPANP 2006K. Filimonov, UC Berkeley From AMANDA to IceCube: Neutrino Astronomy at the South Pole Kirill Filimonov University of California, Berkeley.
The Status of IceCube Mark Krasberg University of Wisconsin-Madison RICH 2004 Conference, Playa del Carmen, Mexico Dec 3, 2004.
Kara Hoffman, the University of Maryland. the Antarctic Muon and Neutrino Array.
News from the South Pole: Recent Results from the IceCube and AMANDA Neutrino Telescopes Alexander Kappes UW-Madison PANIC ‘08 November 2008, Eilat (Israel)
Searching for Quantum Gravity with AMANDA-II and IceCube John Kelley November 11, 2008 PANIC’08, Eilat, Israel.
Neutrino Astronomy at the South Pole Searches for astrophysical high-energy neutrinos with IceCube Kurt Woschnagg UC Berkeley Miami 2012 Lago Mar, Ft Lauderdale,
COSMO/CosPA 2010 Searches for the Highest Energy Neutrino with IceCube Searches for the Highest Energy Neutrino with IceCube Aya Ishihara ( Fellow) (JSPS.
B.Baret Vrije Univertsiteit Brusse l Vrije Universiteit Brussel, Belgium The AMANDA – IceCube telescopes & Dark Matter searches B. Baret on behalf of the.
Neutrino Diffuse Fluxes in KM3NeT Rezo Shanidze, Thomas Seitz ECAP, University of Erlangen (for the KM3NeT consortium) 15 October 2009 Athens, Greece.
SEARCHING FOR A DIFFUSE FLUX OF ULTRA HIGH-ENERGY EXTRATERRESTRIAL NEUTRINOS WITH ICECUBE Henrik Johansson, for the IceCube collaboration LLWI H.
C Alexander Kappes for the IceCube Collaboration 23 rd European Cosmic-Ray Symposium Moscow, 7. July 2012 Neutrino astronomy with the IceCube Observatory.
Madison, May 20, 2009 Tom Gaisser1 IceCube Collaboration Overview & Response to 2008 SAC Report.
IceCube a new window on the Universe Muons & neutrinos Neutrino astronomy IceCube science Status & plans Tom Gaisser for the IceCube Collaboration Arequipa,
AMANDA. Latest Results of AMANDA Wolfgang Rhode Universität Dortmund Universität Wuppertal for the AMANDA Collaboration.
IceCube and AMANDA: Neutrino Astronomy at the South Pole Brennan Hughey February 22nd, 2007.
IceCube Galactic Halo Analysis Carsten Rott Jan-Patrick Huelss CCAPP Mini Workshop Columbus OH August 6, m 2450 m August 6, 20091CCAPP DM Miniworkshop.
1 Jan Conrad (CERN) GLAST Lunch, 09. Mar. 2006, Jan Conrad (KTH) The AMANDA neutrino telescope: Results from GRB and dark matter searches Jan Conrad (KTH,
Alexander Kappes Erlangen Centre for Astroparticle Physics for the ANTARES collaboration IAU GA, SpS 10, Rio de Janeiro, Aug Status of Neutrino.
KEK, Feb 27, 2006Tom Gaisser1 Cosmic-ray physics with IceCube IceTop the surface component of IceCube.
XIX European Cosmic Ray Symposium Firenze (Italy) Neutrino Astronomy and Cosmic Rays at the South Pole Latest.
Science Advisory Committee March 30, 2006 Jim Yeck IceCube Project Director IceCube Construction Progress.
Status and Results Elisa Bernardini DESY Zeuthen, Germany VLVnT Workshop Amsterdam, Oct (
IceCube: Status and Results
IceCube project Shigeru Yoshida Dept. of Physics, Chiba University.
Searching for Quantum Gravity with AMANDA-II and IceCube John Kelley IceCube Collaboration University of Wisconsin, Madison, U.S.A. October 27, 2008 KICP.
Icecube Neutrino Observatory at the South Pole Kirill Filimonov, University of California, Berkeley, for the IceCube Collaboration.
Alexander Kappes (E. Strahler, P. Roth) ECAP, Universität Erlangen-Nürnberg for the IceCube Collaboration 2009 Int. Cosmic Ray Conf., Łódź,
RICH2002, Pylos, GreeceResults from AMANDA/Allan Hallgren, Uppsala1 Results from the Antarctic Muon and Neutrino Detector Array (AMANDA) **Talk prepared.
A search for neutrinos from long-duration GRBs with the ANTARES underwater neutrino telescope arxiv C.W. James for the ANTARES collaboration.
I Taboada, GA Tech High-energy neutrino astronomy with IceCube Ignacio Taboada Georgia Institute of Technology for the IceCube collaboration Madison, NDM.
1 Particles and Nuclei International Conference (PANIC05) Santa Fe, NM (U.S.A.) October 24 th, from Quark n.36, 02/01/04 Neutrino.
1 slide Brennan Hughey University of Wisconsin – Madison for the AMANDA Collaboration Recent Results From the AMANDA Experiment Rencontres du Vietnam August.
IceCube Neutrino Telescope Astroparticle Physics at the South Pole Brendan Fox Pennsylvania State University for the IceCube Collaboration VLVNT08 - Very.
Search for Ultra-High Energy Tau Neutrinos in IceCube Dawn Williams University of Alabama For the IceCube Collaboration The 12 th International Workshop.
EHE Search for EHE neutrinos with the IceCube detector Aya Ishihara Chiba University.
Albrecht Karle University of Wisconsin - Madison for the IceCube Collaboration IceCube Current status, recent results and future prospects.
Dark Matter Searches with AMANDA and IceCube Catherine De Clercq for the IceCube Collaboration Vrije Universiteit Brussel Interuniversity Institute for.
1 Patrick Berghaus University of Wisconsin, Madison AMANDA/IceCube CRIS Malfa, September 2008 AMANDA and IceCube Patrick Berghaus University of Wisconsin,
1 IceCube Christian Spiering for the IceCube Collaboration EPSC, Cracow July 2009.
Measuring the total neutrino cross section using the IceCube detector
Imaging the Neutrino Universe with AMANDA and IceCube
Muons in IceCube PRELIMINARY
Julia Becker for the IceCube collaboration
Recent Results of Point Source Searches with the IceCube Neutrino Telescope Lake Louise Winter Institute 2009 Erik Strahler University of Wisconsin-Madison.
Status and prospects of the IceCube Neutrino Telescope
The IceCube Neutrino Telescope
Diffuse neutrino flux J. Brunner CPPM ESA/NASA/AVO/Paolo Padovani.
Shigeru Yoshida and Aya Ishihara
Presentation transcript:

High-energy Neutrino Astrophysics with IceCube Neutrino Observatory Shigeru Yoshida Department of Physics Chiba University

The IceCube Neutrino Observatory Completed: Dec 2010 Configuration chronology 2006: IC9 2007: IC22 2008: IC40 2009: IC59 2010: IC79 2011: IC86 2004: Project Start 1 string 2011: Project completion 86 strings 8 DeepCore 8 strings – spacing optimized for lower energies 480 optical sensors PMT Digital Optical Module (DOM)

The IceCube Collaboration http://icecube.wisc.edu 36 institutions, ~250 members Canada University of Alberta US Bartol Research Institute, Delaware Pennsylvania State University University of California - Berkeley University of California - Irvine Clark-Atlanta University University of Maryland University of Wisconsin - Madison University of Wisconsin - River Falls Lawrence Berkeley National Lab. University of Kansas Southern University, Baton Rouge University of Alaska, Anchorage University of Alabama, Tuscaloosa Georgia Tech Ohio State University Barbados University of West Indies Sweden Uppsala Universitet Stockholms Universitet Germany Universität Mainz DESY-Zeuthen Universität Dortmund Universität Wuppertal Humboldt-Universität zu Berlin MPI Heidelberg RWTH Aachen Universität Bonn Ruhr-Universität Bochum UK Oxford University Japan Chiba University Belgium Université Libre de Bruxelles Vrije Universiteit Brussel Universiteit Gent Université de Mons-Hainaut Switzerland EPFL, Lausanne New Zealand University of Canterbury ANTARCTICA Amundsen-Scott Station 3

DOM Digital Optical Module HV Base “Flasher Board” Main Board (DOM-MB) 10” PMT 13” Glass (hemi)sphere

Neutrino Detection Principle Observe the charged secondaries via Cherenkov radiation detected by a 3D array of optical sensors νl l, νl hadronic shower W, Z Need a huge volume (km3) of an optically transparent detector material g m Antarctic ice is the most transparent natural solid known (absorption lengths up 200 m) n

Note: Different dataset IC86 = full IceCube (2011~) IceCube IC79 (2010-2011) IC59 (2009-2010) IC40 (2008-2009) IC22 (2007-2008) IceCube IceCube IceCube IceCube

Point Source Search nm  m base m m m North CR signal + background hypothesis vs background only null hypothesis North CR m North South m Note: It’s ALL SKY survey m

n skymap IceCube + IceCube IceCube Preliminary Hottest spot: RA 75.45 Dec -18.15 -log(p)=4.65 ~36 % probability with trial factors up-going m’s w/ atmospheric n BG down-going PeV m’s w/ cosmic-rays BG

GRB Search nm  m base T0: From a satellite GCN Zenith > 85 deg. Off-time On-time Off-time Precursor (~100 s) GRB n modeling – individual GRB bases Prompt Guetta et al Astropart.Phys. 20 (2004) 429 Model Independent (24 h) Background (full year)

No association of n’s with GRB.. Model-dependent limits IceCube IceCube + IceCube We are on the way to indicate GRBs are unlikely to be a major UHECR origin.

Searches for a Diffuse Neutrino Flux Diffuse Flux = effective sum from all (unresolved) extraterrestrial sources (e.g., AGNs) Possibility to observe diffuse signal even if flux from any individual source is too weak for detection as a point source Search for excess of astrophysical neutrinos with a harder spectrum than background atmospheric neutrinos Atmospheric ,  Harder Spectrum  (E-2) Astro.  Energy Advantage over point source search: can detect weaker fluxes Disadvantages: high background must simulate background precisely Sensitive to all three neutrino flavors in principle Atm.  Atm.  11

Diffuse n limit nm  m base Now below the Waxman-Bahcall limit 30 TeV ~ 10 PeV Now below the Waxman-Bahcall limit nm only Waxman-Bahcall bound (theoretical reference estimated from cosmic rays flux assuming optically thin sources) IceCube IC40 PRD 84 082001 (2011)

Diffuse n limit All flavor base By looking for cascade events 30 TeV ~ 10 PeV By looking for cascade events IceCube IceCube (expected) PRD 84 072001 (2011)

GZK n search Detection Principle nm nt ne nm nt Energy Dist. @ IceCube Depth Zenith Dist. @ IceCube Depth through-going track And tracks arrive horizontally Secondary m and t from n nm nt  Sensitive to starting track/ cascade Yoshida et al PRD 69 103004 (2004) Directly induced events from n ne nm nt  Sensitive to

GZK n search Detection Principle Experimental verification The detailed description available in PRD 82 072003 (2010) GZK n search Detection Principle Energy  NPE (total # of photoelectrons) Look for luminous (high NPE) horizontal events Experimental verification Data MC overestimates NPE by ~18% MC Sys. error ~ 7% in SIG rate ~ 50% in BG rate

GZK n search All flavor limits IceCube IceCube IceCube PRD 83 092003 (2011) All flavor (ne + nm + nt) limits Systematic errors included IceCube IceCube IceCube (expected) The world’s best all-flavor  upper limits to date from 106 to 1010 GeV

Expected EHE signal events PRD 83 092003 (2011) Models The half IceCube # of events The full IceCube (3 years)  GZK1 (Yoshida et al) * 0.57 3.1  GZK2 Strong Evol. (Sigl) ** 0.91 (C.L 53.4%) 4.9  GZK3 (ESS with WL=0.0) *** 0.29 1.5  GZK4 (ESS with WL=0.7) *** 0.47 2.5  GZK5 (Ahlers max) **** 0.89 (C.L 52.8%) 4.8  GZK6 (Ahlers best fit) **** 0.43 2.3  Z-Burst # 1.03 (C.L 55.7%) 5.1  Top Down(SUSY) ## 5.68 (C.L 99.6%) 31.6  Top Down(QCD) ### 1.19 (C.L 66.4%) 6.3  W&B(evol) ^ 3.7 24.5  W&B(no evol) ^ 1.1 5.5 IceCube Here is the expected event rate for various models, with the half IceCube configuration and the full IceCube configuration. It can be seen that by the 2012/5 we can expect a few GZK neutrinos. *Yoshida et al The ApJ 479 547-559 (1997), **Kalahsev et al , Phys.Rev.Rev. D 66 063004 (2002), ***Engel et al, Phys. Rev. D, 64(9):093010, 2001, ****Ahlers et al, Astropart. Phys. 34 106-115 (2010) #Yoshida et al, Phys.Rev.Lett. 81 5505 (1998),##Sigl et al , Phys.Rev.Rev. D 59 043504 (1998), ^Razzaque et al(2003)

p-value for the background hypothesis ~0.2% The Highest NPE event IceCube Keep Cut This event p-value for the background hypothesis ~0.2% (posteriori) Detected in 2008 December 8th NPE 2.55x105 photo-electrons Zenith 64.7 deg Aya Ishihara (Chiba)

Diffuse n limits – global picture As of 2011 reported All “IceCube” is “a half IceCube” with 2008-9 configuration RICE ANITA Auger IceCube HiRes ANTARES 2010 IceCube EHE PRD 83 092003 (2011) IceCube UHE PRD 84 082001 (2011) IceCube VHE 1TeV 1PeV 1EeV 1ZeV

nN CC cross section bound with the IceCube 2008 observation Flux of cosmic n (“Beam Intensity”) Cooper-Sarkar & Sarkar JHEP01:075 (2010) snNSM calculated by Standard Model predictions S.Yoshida PRD 82 103012 (2010)

Fluxes at the IceCube depth Black Hole evaporation scenario J.Alvarez-Muniz et al PRD 65, 103002 (2002) x=1 SM S.Yoshida PRD 82 103012 (2010)

Number of events in the IceCube 2008 run Black Hole evaporation scenario Excluded 90 % C.L. (2.44 events) Cosmic n intensity @ 1 EeV Expected S.Yoshida PRD 82 103012 (2010)

MSSM Neutralino Dark Matter c North CR m n m Spin Dependent cross-section: Abundant hydrogen in Sun suitable for spin dependent cross-section measures Spin Independent cross-section: Many direct dark matter searches sensitive

Dark matter searches: Solar WIMPs Determine the muon flux from the direction of the Sun A few to 103 events per year GeV to TeV energies Limit the neutrino-induced muons from WIMP annihilation A strong limit on SD cross-section and good potential IceCube IceCube Phys. Rev. Lett. 102 201302 arXiv:0902.2460 IceCube Preliminary

Dark Matter from the Galactic Halo Dark matter density profile Dark matter model IceCube IC22 (275 days) found no excess PRD 84 022004 (2011) Measure or limit