Chapter 10 - 1 ISSUES TO ADDRESS... When we combine two elements... what is the resulting equilibrium state? In particular, if we specify... -- the composition.

Slides:



Advertisements
Similar presentations
Engr 2110 – Chapter 9 Dr. R. R. Lindeke
Advertisements

Phase Diagrams Continued
L10B: Phases in equilibrium with one another: Composition and amount of each The temperature and pressure must be the same in each phase in equilibrium.
CHAPTER 8 Phase Diagrams 8-1.
Microstructures in Eutectic Systems: I
Phase Equilibria: Solubility Limit Sucrose/Water Phase Diagram Pure Sugar Temperature (°C) Co=Composition (wt% sugar) L (liquid solution.
Chapter 9 Sections:9.2, 9.3, 9.4, 9.5.
Chapter 9: Phase Diagrams
Phase Diagrams Phase: A homogeneous portion of a system that have uniform physical and chemical characteristics. Single phase Two phases For example at.
Introduction to Materials Science, Chapter 9, Phase Diagrams University of Virginia, Dept. of Materials Science and Engineering 1 Development of microstructure.
Phase Diagrams Chapter 10.
PHASE DIAGRAMS Phase B Phase A • When we combine two elements...
ISSUES TO ADDRESS... When we combine two elements... what equilibrium state do we get? In particular, if we specify... --a composition (e.g., wt%Cu - wt%Ni),
How to calculate the total amount of  phase (both eutectic and primary)? Fraction of  phase determined by application of the lever rule across the entire.
Lecture 9 Phase Diagrams 8-1.
Chapter 9 Phase Diagrams.
Chapter ISSUES TO ADDRESS... When we combine two elements... what equilibrium state do we get? In particular, if we specify... --a composition (e.g.,
Chapter 9: Phase Diagrams
ENGR-45_Lec-22_PhaseDia-2.ppt 1 Bruce Mayer, PE Engineering-45: Materials of Engineering Bruce Mayer, PE Licensed Electrical &
Chapter 10: Phase Transformations
Introduction to Materials Science, Chapter 9, Phase Diagrams University of Virginia, Dept. of Materials Science and Engineering 1 Growth of Solid Equilibrium.
1 ISSUES TO ADDRESS... When we combine two elements... what equilibrium state do we get? In particular, if we specify... --a composition (e.g., wt% Cu.
Ex: Phase Diagram: Water-Sugar System THE SOLUBILITY LIMIT.
Chapter 10- ISSUES TO ADDRESS... Transforming one phase into another takes time. How does the rate of transformation depend on time and T? 1 How can we.
Chapter ISSUES TO ADDRESS... When we mix two elements... what equilibrium state do we get? In particular, if we specify... --a composition (e.g.,
Mechanical & Aerospace Engineering West Virginia University 9 – Phase Diagram (2) (Phase Reactions)
Intermetallic Compounds
ME 210 Exam 2 Review Session Dr. Aaron L. Adams, Assistant Professor.
Phase Diagrams And Microstructure
Phase Diagrams melting / production process / alloying (strength, Tm...) heat treatment microstructure material properties system (e.g. Cu-Ni) components.
CHAPTER 10: PHASE DIAGRAMS
The Structure and Dynamics of Solids
CHAPTER 9: PHASE DIAGRAMS
Chapter Lecture 11 Phase Diagrams, Solidification, Phase transformations ME 330 Engineering Materials Solidification Solidification microstructures.
Phase Diagrams Binary Eutectoid Systems Iron-Iron-Carbide Phase Diagram Steels and Cast Iron 1.
Fe-Carbon Phase Diagram
Phase Diagram Fe3C.
ME 330 Engineering Materials
Chapter 10: Phase Transformations
Phase Equilibrium Engr 2110 – Chapter 9 Dr. R. R. Lindeke.
Chapter ISSUES TO ADDRESS... When we combine two elements... what equilibrium state do we get? In particular, if we specify... --a composition (e.g.,
Chapter ISSUES TO ADDRESS... When we combine two __________... what is the resulting _____________state? In particular, if we specify the.
Solid State Reactions Phase Diagrams and Mixing
Metallic Materials-Phase Diagrams
Part 6 Chemistry Engineering Department 23/10/2013
PHASE DIAGRAMS ISSUES TO ADDRESS... • When we combine two elements...
The Iron–Iron Carbide (Fe–Fe3C) Phase Diagram
Chapter 10: Phase Transformations
Phase Diagrams–Equilibrium Microstructural Development
Chapter 9: Phase Diagrams
EX 1: Pb-Sn Eutectic System
Chapter 9: Phase Diagrams
Chapter 11: Phase Diagrams
Introduction to Materials Science and Engineering
CHAPTER 9: Definitions A. Solid Solution
IRON-CARBON (Fe-C) PHASE DIAGRAM
Phase Diagrams Binary Eutectoid Systems Iron-Iron-Carbide Phase Diagram Steels and Cast Iron Weeks
Fully Miscible Solution
HYPOEUTECTIC & HYPEREUTECTIC
CHAPTER 9: PHASE DIAGRAMS
EX: Pb-Sn EUTECTIC SYSTEM (1)
Chapter 10: Phase Diagrams
EX: Pb-Sn EUTECTIC SYSTEM (1)
CHAPTER 8 Phase Diagrams 1.
CHAPTER 8 Phase Diagrams 1.
HYPOEUTECTIC & HYPEREUTECTIC
Chapter 10: Phase Diagrams
IE-114 Materials Science and General Chemistry Lecture-10
CHAPTER 9: PHASE DIAGRAMS
Presentation transcript:

Chapter ISSUES TO ADDRESS... When we combine two elements... what is the resulting equilibrium state? In particular, if we specify the composition (e.g., wt% Cu - wt% Ni), and -- the temperature (T ) then... How many phases form? What is the composition of each phase? What is the amount of each phase? Chapter 10: Phase Diagrams Phase B Phase A Nickel atom Copper atom

Chapter Phase Diagrams Indicate phases as a function of T, C, and P. For this course: - binary systems: just 2 components. - independent variables: T and C (P = 1 atm is almost always used). Phase Diagram for Cu-Ni system Adapted from Fig. 10.3(a), Callister & Rethwisch 3e. (Fig. 10.3(a) is adapted from Phase Diagrams of Binary Nickel Alloys, P. Nash (Ed.), ASM International, Materials Park, OH (1991). 2 phases: L (liquid)  (FCC solid solution) 3 different phase fields: L L +   wt% Ni T(°C) L (liquid)  (FCC solid solution) L +  liquidus solidus

Chapter Cu-Ni phase diagram Isomorphous Binary Phase Diagram Phase diagram: Cu-Ni system. System is: Adapted from Fig. 10.3(a), Callister & Rethwisch 3e. (Fig. 10.3(a) is adapted from Phase Diagrams of Binary Nickel Alloys, P. Nash (Ed.), ASM International, Materials Park, OH (1991). -- binary i.e., 2 components: Cu and Ni. -- isomorphous i.e., complete solubility of one component in another;  phase field extends from 0 to 100 wt% Ni. wt% Ni T(°C) L (liquid)  (FCC solid solution) L +  liquidus solidus

Chapter 10 - wt% Ni T(°C) L (liquid)  (FCC solid solution) L +  liquidus solidus 4 Phase Diagrams : Determination of phase(s) present Rule 1: If we know T and C o, then we know: -- which phase(s) is (are) present. Examples: A(1100°C, 60 wt% Ni): 1 phase:  B(1250°C, 35 wt% Ni): 2 phases: L +  B (1250°C,35) A(1100°C,60) Adapted from Fig. 10.3(a), Callister & Rethwisch 3e. (Fig. 10.3(a) is adapted from Phase Diagrams of Binary Nickel Alloys, P. Nash (Ed.), ASM International, Materials Park, OH (1991).

Chapter wt% Ni T(°C) L (liquid)  (solid) L +  liquidus solidus L +  Cu-Ni system Phase Diagrams : Determination of phase compositions Rule 2: If we know T and C 0, then we can determine: -- the composition of each phase. Examples: TATA A 35 C0C0 32 CLCL At T A = 1320°C: Only Liquid (L) present C L = C 0 ( = 35 wt% Ni) At T B = 1250°C: Both  and L present CLCL = C liquidus ( = 32 wt% Ni) CC = C solidus ( = 43 wt% Ni) At T D = 1190°C: Only Solid (  ) present C  = C 0 ( = 35 wt% Ni) Consider C 0 = 35 wt% Ni D TDTD tie line 4 CC 3 Adapted from Fig. 10.3(a), Callister & Rethwisch 3e. (Fig. 10.3(a) is adapted from Phase Diagrams of Binary Nickel Alloys, P. Nash (Ed.), ASM International, Materials Park, OH (1991). B TBTB

Chapter Rule 3: If we know T and C 0, then can determine: -- the weight fraction of each phase. Examples: At T A : Only Liquid (L) present W L = 1.00, W  = 0 At T D : Only Solid (  ) present WL WL = 0, W  = 1.00 Phase Diagrams : Determination of phase weight fractions wt% Ni T(°C) L (liquid)  (solid) L +  liquidus solidus L +  Cu-Ni system TATA A 35 C0C0 32 CLCL B TBTB D TDTD tie line 4 CC 3 R S At T B : Both  and L present = 0.27 WLWL  S R+S WW  R R+S Consider C 0 = 35 wt% Ni Adapted from Fig. 10.3(a), Callister & Rethwisch 3e. (Fig. 10.3(a) is adapted from Phase Diagrams of Binary Nickel Alloys, P. Nash (Ed.), ASM International, Materials Park, OH (1991).

Chapter Tie line – connects the phases in equilibrium with each other – also sometimes called an isotherm The Lever Rule What fraction of each phase? Think of the tie line as a lever (teeter-totter) MLML MM RS wt% Ni T(°C) L (liquid)  (solid) L +  liquidus solidus L +  B T B tie line C0C0 CLCL CC S R Adapted from Fig. 10.3(b), Callister & Rethwisch 3e.

Chapter wt% Ni L (liquid)  (solid) L +  L +  T(°C) A 35 C0C0 L: 35wt%Ni Cu-Ni system Phase diagram: Cu-Ni system. Adapted from Fig. 10.4, Callister & Rethwisch 3e. Consider microstuctural changes that accompany the cooling of a C 0 = 35 wt% Ni alloy Ex: Cooling of a Cu-Ni Alloy  : 43 wt% Ni L: 32 wt% Ni B  : 46 wt% Ni L: 35 wt% Ni C E L: 24 wt% Ni  : 36 wt% Ni D

Chapter 10 - Slow rate of cooling: Equilibrium structure Fast rate of cooling: Cored structure First  to solidify: 46 wt% Ni Last  to solidify: < 35 wt% Ni 9 C  changes as we solidify. Cu-Ni case: First  to solidify has C  = 46 wt% Ni. Last  to solidify has C  = 35 wt% Ni. Cored vs Equilibrium Structures Uniform C  : 35 wt% Ni

Chapter Mechanical Properties: Cu-Ni System Effect of solid solution strengthening on: -- Tensile strength (TS)-- Ductility (%EL) Adapted from Fig. 10.6(a), Callister & Rethwisch 3e. Tensile Strength (MPa) Composition, wt% Ni Cu Ni TS for pure Ni TS for pure Cu Elongation (%EL) Composition, wt% Ni Cu Ni %EL for pure Ni %EL for pure Cu Adapted from Fig. 10.6(b), Callister & Rethwisch 3e.

Chapter components has a special composition with a min. melting T. Adapted from Fig. 10.7, Callister & Rethwisch 3e. Binary-Eutectic Systems 3 single phase regions (L, ,  ) Limited solubility:  : mostly Cu  : mostly Ag T E : No liquid below T E : Composition at temperature T E C E Ex.: Cu-Ag system Cu-Ag system L (liquid)  L +  L+    C,wt% Ag T(°C) CECE TETE °C cooling heating Eutectic reaction L(C E )  (C  E ) +  (C  E )

Chapter L+  L+   +  200 T(°C) 18.3 C, wt% Sn L (liquid)  183°C  For a 40 wt% Sn-60 wt% Pb alloy at 150°C, determine: -- the phases present Pb-Sn system EX 1: Pb-Sn Eutectic System Answer:  +  -- the phase compositions -- the relative amount of each phase C0C0 11 CC 99 CC S R Answer: C  = 11 wt% Sn C  = 99 wt% Sn W  = C  - C 0 C  - C  = = = 0.67 S R+SR+S = W  = C 0 - C  C  - C  = R R+SR+S = = 0.33 = Answer: Adapted from Fig. 10.8, Callister & Rethwisch 3e.

Chapter Answer: C  = 17 wt% Sn -- the phase compositions L+   +  200 T(°C) C, wt% Sn L (liquid)   L+  183°C For a 40 wt% Sn-60 wt% Pb alloy at 220°C, determine: -- the phases present: Pb-Sn system EX 2: Pb-Sn Eutectic System -- the relative amount of each phase W  = C L - C 0 C L - C  = = 6 29 = 0.21 WLWL = C 0 - C  C L - C  = = C0C0 46 CLCL 17 CC 220 S R Answer:  + L C L = 46 wt% Sn Answer: Adapted from Fig. 10.8, Callister & Rethwisch 3e.

Chapter For alloys for which C 0 < 2 wt% Sn Result: at room temperature -- polycrystalline with grains of  phase having composition C 0 Microstructural Developments in Eutectic Systems I 0 L +  200 T(°C) C,wt% Sn C0C L  30  +  400 (room T solubility limit) TETE (Pb-Sn System)  L L: C 0 wt% Sn  : C 0 wt% Sn Adapted from Fig , Callister & Rethwisch 3e.

Chapter For alloys for which 2 wt% Sn < C 0 < 18.3 wt% Sn Result: at temperatures in  +  range -- polycrystalline with  grains and small  -phase particles Adapted from Fig , Callister & Rethwisch 3e. Microstructural Developments in Eutectic Systems II Pb-Sn system L +  200 T(°C) C,wt% Sn C0C L  30  +  400 (sol. limit at T E ) TETE 2 (sol. limit at T room ) L  L: C 0 wt% Sn    : C 0 wt% Sn

Chapter For alloy of composition C 0 = C E Result: Eutectic microstructure (lamellar structure) -- alternating layers (lamellae) of  and  phases. Adapted from Fig , Callister & Rethwisch 3e. Microstructural Developments in Eutectic Systems III Adapted from Fig , Callister & Rethwisch 3e. 160  m Micrograph of Pb-Sn eutectic microstructure Pb-Sn system LL  200 T(°C) C, wt% Sn L   L+  183°C 40 TETE 18.3  : 18.3 wt%Sn 97.8  : 97.8 wt% Sn CECE 61.9 L: C 0 wt% Sn

Chapter Lamellar Eutectic Structure Adapted from Figs & 10.15, Callister & Rethwisch 3e.

Chapter For alloys for which 18.3 wt% Sn < C 0 < 61.9 wt% Sn Result:  phase particles and a eutectic microconstituent Microstructural Developments in Eutectic Systems IV SR 97.8 S R primary  eutectic   WLWL = (1-W  ) = 0.50 CC = 18.3 wt% Sn CLCL = 61.9 wt% Sn S R +S WW = = 0.50 Just above T E : Just below T E : C  = 18.3 wt% Sn C  = 97.8 wt% Sn S R +S W  = = 0.73 W  = 0.27 Adapted from Fig , Callister & Rethwisch 3e. Pb-Sn system L+  200 T(°C) C, wt% Sn L   L+  40  +  TETE L: C 0 wt% Sn L  L 

Chapter L+  L+   +  200 C, wt% Sn L   TETE 40 (Pb-Sn System) Hypoeutectic & Hypereutectic Adapted from Fig. 10.8, Callister & Rethwisch 3e. (Fig adapted from Binary Phase Diagrams, 2nd ed., Vol. 3, T.B. Massalski (Editor-in-Chief), ASM International, Materials Park, OH, 1990.) 160  m eutectic micro-constituent Adapted from Fig , Callister & Rethwisch 3e. hypereutectic: (illustration only)       Adapted from Fig , Callister & Rethwisch 3e. (Illustration only) (Figs and from Metals Handbook, 9th ed., Vol. 9, Metallography and Microstructures, American Society for Metals, Materials Park, OH, 1985.) 175  m       hypoeutectic: C 0 = 50 wt% Sn Adapted from Fig , Callister & Rethwisch 3e. T(°C) 61.9 eutectic eutectic: C 0 = 61.9 wt% Sn

Chapter Intermetallic Compounds Mg 2 Pb Note: intermetallic compound exists as a line on the diagram - not an area - because of stoichiometry (i.e. composition of a compound is a fixed value). Adapted from Fig , Callister & Rethwisch 3e.

Chapter Eutectoid – one solid phase transforms to two other solid phases S 2 S 1 +S 3   + Fe 3 C (For Fe-C, 727  C, 0.76 wt% C) intermetallic compound - cementite cool heat Eutectic, Eutectoid, & Peritectic Eutectic - liquid transforms to two solid phases L  +  (For Pb-Sn, 183  C, 61.9 wt% Sn) cool heat cool heat Peritectic - liquid and one solid phase transform to a second solid phase S 1 + L S 2  + L  (For Fe-C, 1493°C, 0.16 wt% C)

Chapter Eutectoid & Peritectic Cu-Zn Phase diagram Adapted from Fig , Callister & Rethwisch 3e. Eutectoid transformation   +  Peritectic transformation  + L 

Chapter Ceramic Phase Diagrams MgO-Al 2 O 3 diagram: Adapted from Fig , Callister & Rethwisch 3e. 

Chapter Iron-Carbon (Fe-C) Phase Diagram 2 important points - Eutectoid (B):  + Fe 3 C - Eutectic (A): L  + Fe 3 C Adapted from Fig , Callister & Rethwisch 3e. Fe 3 C (cementite) L  (austenite)  +L+L  +Fe 3 C   +   (Fe) C, wt% C 1148°C T(°C)  727°C = T eutectoid 4.30 Result: Pearlite = alternating layers of  and Fe 3 C phases 120  m (Adapted from Fig , Callister & Rethwisch 3e.) 0.76 B    A L+Fe 3 C Fe 3 C (cementite-hard)  (ferrite-soft)

Chapter Fe 3 C (cementite) L  (austenite)  +L+L  + Fe 3 C  L+Fe 3 C  (Fe) C, wt% C 1148°C T(°C)  727°C (Fe-C System) C0C Hypoeutectoid Steel Adapted from Figs and 10.33,Callister & Rethwisch 3e. (Fig adapted from Binary Alloy Phase Diagrams, 2nd ed., Vol. 1, T.B. Massalski (Ed.-in- Chief), ASM International, Materials Park, OH, 1990.) Adapted from Fig , Callister & Rethwisch 3e. proeutectoid ferrite pearlite 100  m Hypoeutectoid steel  pearlite              

Chapter Fe 3 C (cementite) L  (austenite)  +L+L  + Fe 3 C  L+Fe 3 C  (Fe) C, wt% C 1148°C T(°C)  727°C (Fe-C System) C0C Hypoeutectoid Steel        sr W  = s/(r + s) W  =(1 - W  ) R S  pearlite W pearlite = W  W  ’ = S/(R + S) W =(1 – W  ’ ) Fe 3 C Adapted from Figs and 10.33,Callister & Rethwisch 3e. (Fig adapted from Binary Alloy Phase Diagrams, 2nd ed., Vol. 1, T.B. Massalski (Ed.-in- Chief), ASM International, Materials Park, OH, 1990.) Adapted from Fig , Callister & Rethwisch 3e. proeutectoid ferrite pearlite 100  m Hypoeutectoid steel

Chapter Hypereutectoid Steel Fe 3 C (cementite) L  (austenite)  +L+L  +Fe 3 C  L+Fe 3 C  (Fe) C, wt%C 1148°C T(°C)  Adapted from Figs and 10.36,Callister & Rethwisch 3e. (Fig adapted from Binary Alloy Phase Diagrams, 2nd ed., Vol. 1, T.B. Massalski (Ed.-in- Chief), ASM International, Materials Park, OH, 1990.) (Fe-C System) 0.76 C0C0 Fe 3 C             Adapted from Fig , Callister & Rethwisch 3e. proeutectoid Fe 3 C 60  m Hypereutectoid steel pearlite

Chapter Fe 3 C (cementite) L  (austenite)  +L+L  +Fe 3 C  L+Fe 3 C  (Fe) C, wt%C 1148°C T(°C)  Hypereutectoid Steel (Fe-C System) 0.76 C0C0 pearlite Fe 3 C     x v VX W pearlite = W  W  = X/(V + X) W =(1 - W  ) Fe 3 C’ W  =(1-W  ) W  =x/(v + x) Fe 3 C Adapted from Fig , Callister & Rethwisch 3e. proeutectoid Fe 3 C 60  m Hypereutectoid steel pearlite Adapted from Figs and 10.36,Callister & Rethwisch 3e. (Fig adapted from Binary Alloy Phase Diagrams, 2nd ed., Vol. 1, T.B. Massalski (Ed.-in- Chief), ASM International, Materials Park, OH, 1990.)

Chapter Example Problem For a 99.6 wt% Fe-0.40 wt% C steel at a temperature just below the eutectoid, determine the following: a)The compositions of Fe 3 C and ferrite (  ). b)The amount of cementite (in grams) that forms in 100 g of steel. c)The amounts of pearlite and proeutectoid ferrite (  ) in the 100 g.

Chapter Solution to Example Problem b)Using the lever rule with the tie line shown a) Using the RS tie line just below the eutectoid C  = wt% C C Fe 3 C = 6.70 wt% C Fe 3 C (cementite) L  (austenite)  +L+L  + Fe 3 C  L+Fe 3 C  C, wt% C 1148°C T(°C) 727°C C0C0 R S C Fe C 3 CC Amount of Fe 3 C in 100 g = (100 g)W Fe 3 C = (100 g)(0.057) = 5.7 g

Chapter Solution to Example Problem (cont) c) Using the VX tie line just above the eutectoid and realizing that C 0 = 0.40 wt% C C  = wt% C C pearlite = C  = 0.76 wt% C Fe 3 C (cementite) L  (austenite)  +L+L  + Fe 3 C  L+Fe 3 C  C, wt% C 1148°C T(°C) 727°C C0C0 V X CC CC Amount of pearlite in 100 g = (100 g)W pearlite = (100 g)(0.512) = 51.2 g

Chapter Alloying with Other Elements T eutectoid changes: Adapted from Fig ,Callister & Rethwisch 3e. (Fig from Edgar C. Bain, Functions of the Alloying Elements in Steel, American Society for Metals, 1939, p. 127.) T Eutectoid (°C) wt. % of alloying elements Ti Ni Mo Si W Cr Mn C eutectoid changes: Adapted from Fig ,Callister & Rethwisch 3e. (Fig from Edgar C. Bain, Functions of the Alloying Elements in Steel, American Society for Metals, 1939, p. 127.) wt. % of alloying elements C eutectoid (wt% C) Ni Ti Cr Si Mn W Mo

Chapter Phase diagrams are useful tools to determine: -- the number and types of phases present, -- the composition of each phase, -- and the weight fraction of each phase given the temperature and composition of the system. The microstructure of an alloy depends on -- its composition, and -- whether or not cooling rate allows for maintenance of equilibrium. Important phase diagram phase transformations include eutectic, eutectoid, and peritectic. Summary

Chapter Core Problems: Self-help Problems: ANNOUNCEMENTS Reading: