CHAPTER 5 THE STRUCTURE AND FUNCTION OF MACROMOLECULES Copyright © 2002 Pearson Education, Inc., publishing as Benjamin Cummings Section D: Proteins -

Slides:



Advertisements
Similar presentations
Proteins.
Advertisements

PROTEINS Proteins are the most complex and most diverse group of biological compounds. If you weigh about 70 kg: About 50 of your 70 kg is water. Many.
Protein Structure and Function Review: Fibrous vs. Globular Proteins.
Proteins - Many Structures, Many Functions 1.A polypeptide is a polymer of amino acids connected to a specific sequence 2.A protein’s function depends.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Concept 5.4: Proteins have many structures, resulting in a wide range of functions.
Proteins. Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Concept 5.4: Proteins have many structures, resulting in a wide range.
© 2012 Pearson Education, Inc. Lecture by Edward J. Zalisko PowerPoint Lectures for Campbell Biology: Concepts & Connections, Seventh Edition Reece, Taylor,
Biology 107 Macromolecules II September 9, Macromolecules II Student Objectives:As a result of this lecture and the assigned reading, you should.
Biology 107 Macromolecules II September 8, 2003.
Biology 102 Lecture 5: Biological Molecules (cont.)
Proteins account for more than 50% of the dry mass of most cells
Proteins (aka polypeptides)
Proteins account for more than 50% of the dry mass of most cells
CHAPTER 5 THE STRUCTURE AND FUNCTION OF MACROMOLECULES Copyright © 2002 Pearson Education, Inc., publishing as Benjamin Cummings Section A: Polymer principles.
7.5: PROTEINS Proteins Function Structure. Function 7.5.4: State four functions of proteins, giving a named example of each. [Obj. 1] Proteins are the.
A protein’s function depends on its specific conformation (shape) A functional proteins consists of one or more polypeptides that have been precisely twisted,
AP Biology Proteins. AP Biology Proteins  Most structurally & functionally diverse group of biomolecules  Function:  involved in almost everything.
AP Biology Proteins Multipurpose molecules Proteins Most structurally & functionally diverse group Function: involved in almost everything – enzymes.
Molecules of Life II CHAPTER 3 Proteins Amino Acid Monomers Polypeptide (protein) Polymers Levels of Protein Structure Importance of Structure to Function.
AP Biology Proteins Multipurpose molecules.
Proteins.
Proteins.
AP Biology Chemical Building Blocks  3.4 Proteins.
AP Biology Proteins AP Biology Proteins Multipurpose molecules.
AP Biology Proteins. AP Biology Proteins  Most structurally & functionally diverse group of biomolecules  Function:  involved in.
MCC BP Based on work by K. Foglia Proteins.
Proteins Multipurpose molecules Proteins Most structurally & functionally diverse group of biomolecules Function: involved in almost everything.
AP Biology Discuss the following with your group and be prepared to discuss with the class 1. Why is the shape of a molecule important? 2. How is a covalent.
Proteins are instrumental in about everything that an organism does. These functions include structural support, storage, transport of other substances,
THE STRUCTURE AND FUNCTION OF MACROMOLECULES Proteins - Many Structures, Many Functions 1.A polypeptide is a polymer of amino acids connected to a specific.
The Structure and Function of Macromolecules Proteins & Nucleic Acids.
Introduction to Proteins
AP Biology Adapted from: Kim Foglia at Explore Biology for Northeast Kings Biology Proteins.
AP Biology Proteins AP Biology Proteins Multipurpose molecules.
AP Biology Proteins AP Biology Proteins Multipurpose molecules.
Objective 7: TSWBAT recognize and give examples of four levels of protein conformation and relate them to denaturation.
5.4: Proteins Introduction
Proteins.
Proteins Polypeptide chains in specific conformations Protein Graphic Design video.
AP Biology Organic Chemistry: Proteins AP Biology Proteins Multipurpose molecules.
W-H Based on work by K. Foglia Proteins. W-H Based on work by K. Foglia Proteins  Most structurally & functionally diverse group of biomolecules  Function:
1 2- Proteins Many Structures, Many Functions 1.A polypeptide is a polymer of amino acids connected in a specific sequence 2.A protein’s function depends.
PROTEINS Characteristics of Proteins Contain carbon, hydrogen, oxygen, nitrogen, and sulfur Serve as structural components of animals Serve as control.
AP Biology Proteins AP Biology Proteins Multipurpose molecules.
PROTEINS L3 BIOLOGY. FACTS ABOUT PROTEINS: Contain the elements Carbon, Hydrogen, Oxygen, and NITROGEN Polymer is formed using 20 different amino acids.
AP Biology Proteins AP Biology Proteins Multipurpose molecules.
AP Biology Proteins AP Biology Proteins Multipurpose molecules.
AP Biology MOLECULE PROPERTIES  How does chemistry play a foundational role in biology?  What properties of water make it so vital to living organisms?
Proteins - Many Structures, Many Functions
Proteins Importance: instrumental in nearly everything organisms do; 50% dry weight of cells; most structurally sophisticated molecules known Monomer:
Chapter 3.2 Proteins Proteins  Most structurally & functionally diverse group of biomolecules  Functions:  involved in almost everything  enzymes.
Proteins Proteins are a major constituent of most cells (>50% dry weight) They are important as structural and control elements in the cell and organism.
Chapter 5 The Structure and Function of Macromolecules
Chapter 5 Proteins.
CHAPTER 5 THE STRUCTURE AND FUNCTION OF MACROMOLECULES
Chemical agents PROTEINS: The Molecular Tools of the Cell
Protein Structure.
Proteins clockwise: Rubisco — most important protein on the planet?
Proteins Section 3.4.
Protein Structure Amino Acids Polypeptide Levels of Structure
Contains Carbon Carbohydrates Lipids Nucleic Acids Proteins.
Multipurpose molecules
Macromolecules Part 2 Unit 1 Chapter 5.
Amino acids are linked by peptide bonds
Chapter 3 Proteins.
Proteins.
Proteins are involved in
Proteins.
Proteins.
CHAPTER 5 THE STRUCTURE AND FUNCTION OF MACROMOLECULES
Presentation transcript:

CHAPTER 5 THE STRUCTURE AND FUNCTION OF MACROMOLECULES Copyright © 2002 Pearson Education, Inc., publishing as Benjamin Cummings Section D: Proteins - Many Structures, Many Functions 1.A polypeptide is a polymer of amino acids connected to a specific sequence 2.A protein’s function depends on its specific conformation

Proteins are instrumental in about everything that an organism does. These functions include structural support, storage, transport of other substances, intercellular signaling, movement, and defense against foreign substances. Proteins are the overwhelming enzymes in a cell and regulate metabolism by selectively accelerating chemical reactions. Humans have 100,000 different proteins, each with their own structure and function. Introduction Copyright © 2002 Pearson Education, Inc., publishing as Benjamin Cummings

Proteins are the most structurally complex molecules known. Each type of protein has a complex three-dimensional shape or conformation. All protein polymers are constructed from the same set of 20 monomers, called amino acids. Polymers of proteins are called polypeptides. A protein consists of one or more polypeptides folded and coiled into a specific conformation. Copyright © 2002 Pearson Education, Inc., publishing as Benjamin Cummings

Differences in R groups produce the 20 different amino acids. 1. A polypeptide is a polymer of amino acids connected in a specific sequence Copyright © 2002 Pearson Education, Inc., publishing as Benjamin Cummings

The twenty different R groups may be as simple as a hydrogen atom (as in the amino acid glutamine) to a carbon skeleton with various functional groups attached. The physical and chemical characteristics of the R group determine the unique characteristics of a particular amino acid. Copyright © 2002 Pearson Education, Inc., publishing as Benjamin Cummings

One group of amino acids has hydrophobic R groups. Fig. 5.15a

Copyright © 2002 Pearson Education, Inc., publishing as Benjamin Cummings Another group of amino acids has polar R groups, making them hydrophilic. Fig. 5.15b

The last group of amino acids includes those with functional groups that are charged (ionized) at cellular pH. Some R groups are bases, others are acids. Copyright © 2002 Pearson Education, Inc., publishing as Benjamin Cummings Fig. 5.15c

Amino acids are joined together when a dehydration reaction removes a hydroxyl group from the carboxyl end of one amino acid and a hydrogen from the amino group of another. The resulting covalent bond is called a peptide bond. Copyright © 2002 Pearson Education, Inc., publishing as Benjamin Cummings Fig. 5.16

Repeating the process over and over creates a long polypeptide chain. The repeated sequence (N-C-C) is the polypeptide backbone. Attached to the backbone are the various R groups. Polypeptides range in size from a few monomers to thousands. Copyright © 2002 Pearson Education, Inc., publishing as Benjamin Cummings

A functional proteins consists of one or more polypeptides that have been precisely twisted, folded, and coiled into a unique shape. It is the order of amino acids that determines what the three-dimensional conformation will be. 2. A protein’s function depends on its specific conformation Copyright © 2002 Pearson Education, Inc., publishing as Benjamin Cummings Fig. 5.17

. In almost every case, the function depends on its ability to recognize and bind to some other molecule. For example, antibodies bind to particular foreign substances that fit their binding sites. Enzyme recognize and bind to specific substrates, facilitating a chemical reaction. Neurotransmitters pass signals from one cell to another by binding to receptor sites on proteins in the membrane of the receiving cell. Copyright © 2002 Pearson Education, Inc., publishing as Benjamin Cummings

The folding of a protein from a chain of amino acids occurs spontaneously. Three levels of structure: primary, secondary, and tertiary structure, are used to organize the folding within a single polypeptide. Quarternary structure arises when two or more polypeptides join to form a protein. Copyright © 2002 Pearson Education, Inc., publishing as Benjamin Cummings

The primary structure of a protein is its unique sequence of amino acids. Lysozyme, an enzyme that attacks bacteria, consists on a polypeptide chain of 129 amino acids. The precise primary structure of a protein is determined by the sequence of the DNA Copyright © 2002 Pearson Education, Inc., publishing as Benjamin Cummings Fig. 5.18

Even a slight change in primary structure can affect a protein’s conformation and ability to function. In individuals with sickle cell disease, abnormal hemoglobins, oxygen-carrying proteins, develop because of a single amino acid substitution. These abnormal hemoglobins crystallize, deforming the red blood cells and leading to clogs in tiny blood vessels. Copyright © 2002 Pearson Education, Inc., publishing as Benjamin Cummings

Fig Copyright © 2002 Pearson Education, Inc., publishing as Benjamin Cummings

The secondary structure of a protein results from hydrogen bonds at regular intervals along the polypeptide backbone. Shapes that develop from secondary structure are coils (an alpha helix) or folds (beta pleated sheets). Copyright © 2002 Pearson Education, Inc., publishing as Benjamin Cummings Fig. 5.20

The structural properties of silk are due to beta pleated sheets. The presence of so many hydrogen bonds makes each silk fiber stronger than steel. Copyright © 2002 Pearson Education, Inc., publishing as Benjamin Cummings Fig. 5.21

Copyright © 2002 Pearson Education, Inc., publishing as Benjamin Cummings Tertiary structure is determined by a variety of interactions among R groups and between R groups and the polypeptide backbone. These interactions include hydrogen bonds among polar and/or charged areas, ionic bonds between charged R groups, and hydrophobic interactions Fig. 5.22

While these three interactions are relatively weak, disulfide bridges, strong covalent bonds that form between the sulfhydryl groups (SH) of cysteine monomers, stabilize the structure. Resulting in Morgan’s curly hair. Copyright © 2002 Pearson Education, Inc., publishing as Benjamin Cummings Fig. 5.22

Quarternary structure results from the aggregation of two or more polypeptide subunits. Collagen is a fibrous protein of three polypeptides that are supercoiled like a rope. This provides the structural strength for their role in connective tissue. Hemoglobin is a globular protein with two copies of two kinds of polypeptides. Copyright © 2002 Pearson Education, Inc., publishing as Benjamin Cummings Fig. 5.23

Copyright © 2002 Pearson Education, Inc., publishing as Benjamin Cummings Fig. 5.24

Alterations in pH, salt concentration, temperature, or other factors can unravel or denature a protein. (If Morgan straightened her hair, she would break the disulfide bonds.) These forces disrupt the hydrogen bonds, ionic bonds, and disulfide bridges that maintain the protein’s shape. Copyright © 2002 Pearson Education, Inc., publishing as Benjamin Cummings