Introduction: Why is QCD so much fun? The Physics: Glue and Charm:

Slides:



Advertisements
Similar presentations
Günther Rosner EUROHORC/NuPECC, Paris, 29/11/04 1 Hadron Structure & Spectroscopy Experimental frontiers: High precision High intensity Theoretical symbiosis:
Advertisements

Hadron Physics with Antiprotons – the PANDA Program Olaf N. Hartmann GSI Darmstadt, Germany INPC 2004 · Göteborg, Sweden.
Carsten Schwarz KP2 Physics with anti protons at the future GSI facility Physics program Detector set-up p e - coolerdetector High Energy Storage.
Hierarchies of Matter matter crystal atom atomic nucleus nucleon quarks m m m m < m (macroscopic) confinement hadron.
Guenther Rosner FAIR - UK DL, 11/10/06 1 Collaboration Universität Basel, IHEP Beijing, [University of Birmingham] Ruhr- Universität Bochum,
Klaus Peters - GSI Future - Physics with Antiprotons
Hierarchies of Matter matter crystal atom atomic nucleus nucleon quarks m m m m < m (macroscopic) confinement hadron.
Hadron Klaus Peters Ruhr-Universität Bochum Santiago de Campostela, Oct 27, 2003.
Russian Contribution to PANDA Project (Part I) Dmitry Morozov, IHEP (Protvino) 1st FRRC International Seminar Moscow, ITEP June
Hybrids and Glueballs in the light of antiproton reactions pBar Workshop GSI, Klaus Peters Ruhr-Universität Bochum.
PANDA Ulrich Wiedner, FAIR PAC meeting, March 14, 2005.
Physics with the PANDA Detector at GSI
STORI’02Carsten Schwarz Physics with p at the Future GSI Facility Physics program Detector set-up p e - coolerdetector High Energy Storage Ring HESR High.
Charmonium Spectroscopy: Missing or Unconfirmed States Diego Bettoni INFN – Sezione di Ferrara International Workshop on Physics with Antiprotons at GSI.
Klaus Peters Ruhr-Universität Bochum GLUONIC 2003 Jefferson Lab Newport News, May 15, 2003 Exotic
Journée Thématique IPN Orsay, 2004 PANDA, a new detector for hadronic physics at GSI (FAIR) Carsten Schwarz, GSI ● The FAIR facility  HESR Storage ring.
Open and Hidden Charm Spectroscopy with Klaus Peters Ruhr-University Bochum Beijing, August 16-22, 2004 D DD*DD* ψ(1 1 D 2 ) ψ(1 3 D 2 ) ψ(1 3 D 3 ) ψ(1.
Charmonium Spectroscopy at  PANDA Diego Bettoni INFN, Ferrara, Italy for the  PANDA Collaboration Mainz, Germany, 19 November 2009.
Polish-German Meeting, Warszawa, Search for exotic hadrons with the PANDA detector Jan Kisiel Institute of Physics, University of Silesia Katowice,
James Ritman Univ. Giessen PANDA: Experiments to Study the Properties of Charm in Dense Hadronic Matter Overview of the PANDA Pbar-A Program The Pbar Facility.
The PANDA experiment at FAIR Diego Bettoni Istituto Nazionale di Fisica Nucleare, Ferrara representing the PANDA collaboration Charm 2007 Cornell University,
1May 27, 2002Klaus Peters - GSI Future - Physics with Antiprotons.
Antiproton Physics at GSI The GSI Future project The antiproton facility The physics program - Charmonium spectroscopy - Charmed hybrids and glueballs.
Klaus Peters Ruhr-Universität Bochum U Cincinnati, Nov 18, 2002 FNAL, Batavia, Nov 20, 2002 JLab, Newport News, Nov 22, 2002 TRIUMF, Vancouver, Nov 28,
Workshop on Experiments with Antiprotons at the HESR – April 2002, GSI Charmed Hadrons in Matter Introduction Medium Effects in the light quark sector.
H. Koch, SMI/ÖAW Symposium Vienna, September 1, 2006 Physics Goals of PANDA  Introduction – The PANDA Project – PANDA and HESR – Status of the PANDA Project.
Mitglied der Helmholtz-Gemeinschaft Andrey Sokolov IKP FZ Jülich, Germany The Central Tracker of the PANDA Detector The X International Conference on Instrumentation.
The DIRC projects of the PANDA experiment at FAIR Klaus Föhl on behalf of RICH2007 Trieste 18 October 2007 Cherenkov Group rough-egdes version (isn’t it.
Working Group 5 Summary David Christian Fermilab.
D DD*DD* ψ(1 1 D 2 ) ψ(1 3 D 2 ) ψ(1 3 D 3 ) ψ(1 3 D 1 ) η c (1 1 S 0 ) η c (2 1 S 0 ) J/ψ(1 3 S 1 ) χ c0 (1 3 P 0 ) χ c1 (1 3 P 1 ) χ c2 (1 3 P 2 ) h.
Meson spectroscopy with photo- and electro-production Curtis A. Meyer Carnegie Mellon University.
Antiproton Physics at GSI Introduction The antiproton facility The physics program - Charmonium spectroscopy - Hybrids and glueballs - Interaction of charm.
Klaus Peters Ruhr-Universität Bochum Yokohama, March 3, 2003 Charmed
1PhiPsi2011 BINP, Novosibirsk Johann Zmeskal, SMI Vienna for the PANDA collaboration at an overview International Workshop on e+e- collisions from Phi.
Hadron Physics QCD: are we satisfied with it? Antiproton’s potentiality The PANDA enterprise 1 Paola Gianotti.
Charmonium Spectroscopy: Present Status and Prospects for PANDA Diego Bettoni Istituto Nazionale di Fisica Nucleare, Ferrara Physics of Compressed Baryonic.
H. Koch, SFAIR, Lund, Sept , 2005 Hadron Physics with Antiprotons  Overview  Physics with PANDA (see J. Ritman, U. Wiedner) – Hadron.
Antiproton Physics Experiments Keith Gollwitzer -- Fermilab Antiproton Sources Accumulator Antiproton Physics Experiments –Precision measurements Method.
H. Koch, QCD-N 06, June 2006 PANDA at the GSI  Introduction  The FAIR-Project and the PANDA-Detector  Physics Program of the PANDA-Collaboration – Hadron.
The PANDA detector at the future FAIR laboratory Klaus Föhl on behalf of the PANDA collaboration 12 July 2007 SPIN-Praha-2007 and Edinburgh 8 August 2007.
C. Schwarz Experiments with a cooled p beam on an internal target Physics program Detector set-up p e - coolerdetector High Energy Storage Ring HESR P.
Paola Gianotti - LNF  Goals and achievements in meson spectroscopy: LEAR and FermiLab activities  Overview of the GSI Future Project  The Antiproton.
Workshop JINR/BMBF18.Jan.05, H.O. PANDA at FAIR Facility for Antiproton and Ion Research Herbert Orth GSI Darmstadt.
New Perspectives for Physics with Antiprotons: the HESR-Project at GSI Volker Metag II. Physikalisches Institut Justus-Liebig-Universität Gießen, Germany.
Sub-Nucleon Physics Programme Current Status & Outlook for Hadron Physics D G Ireland.
H. Koch, L.M.U. and T.U. Munich, Dec. 15, 2005 News with Charm  Introduction  Open Charm States  States with hidden Charm  Future: PANDA-Detector at.
Physics with open charm mesons at
James Ritman Univ. Giessen PANDA: An Experiment To Investigate Hadron Structure Using Antiproton Beams Overview of the GSI Upgrade Overview of the PANDA.
Günther Rosner EINN05, Milos, 24/9/05 1 Prospects for Hadron Physics in Europe Experimental frontiers:  High precision  High luminosity  Polarisation.
Physics with the  PANDA Detector at GSI Diego Bettoni Istituto Nazionale di Fisica Nucleare, Ferrara Riunione WG Fisica Adronica e dello Spin Roma, 7.
C. Schwarz Experiments with a cooled p beam on an internal target Physics program Detector set-up Carsten Schwarz p e - coolerdetector High Energy Storage.
H. Koch; Seminar Graduate College Bochum/Dortmund; Hadron Spectroscopy with Antiprotons  Historical Overview  Spetroscopy with antiproton beams.
V. Mochalov (IHEP, Protvino) on behalf of the PANDA collaboration PANDA PHYSICS WITH THE USE OF ANTIPROTON BEAM.
Korea-EU Alice 2004 Su Houng Lee Hungchong Kim, Taesoo Song, Yongjae Park, Yongshin Kwon (Osaka), Youngsoo Son, Kyungchul Han, Kyungil Kim Nuclear and.
The DIRC projects of the PANDA experiment at FAIR
Goals of future p-pbar experiment Elmaddin Guliyev Student Seminar, KVI, Groningen University 6 November 2008.
Exploring QCD with Antiprotons PANDA at FAIR M. Hoek on behalf of the PANDA Collaboration IOP Nuclear and Particle Physics Divisional Conference 4-7 April.
– A Novel Detector For Frontier Physics Andrey Sokolov Institute of Nuclear Physics, Jülich Research Center, Germany XVIII International Baldin.
Günther Rosner FAIR UK DL, 25/01/06 1 antiProton Annihilation at DArmstadt Physics programme  Quark confinement: Charmonium spectroscopy 
Exotic and non-Exotic Charmonium Spectroscopy with FAIR Klaus Peters on behalf of the PANDA Collaboration GSI and U Frankfurt TU Munich, Oct 11,
Past Fermilab Accumulator Experiments Antiproton Source Accumulator Ring (Inner Ring) Debuncher Ring (Outer Ring) AP50 Experiment Area PRECISION Precision.
June 25, 2016 Mitglied der Helmholtz-Gemeinschaft The PANDA Experiment at FAIR XLIX International Winter Meeting on Nuclear Physics, Bormio 2011 | Tobias.
PANDA AntiProton Annihilations at Darmstadt PANDA Experiment Physics and Data Analysis –Charmonium, glueballs, hybrids –Electromagnetic processes Fritz-Herbert.
Physics perspectives at PANDA Hadron Structure and Charm Physics with Antiprotons Alberto Rotondi University of Pavia AntiProton ANnihilations at DArmstadt.
D. Bettoni - The Panda experiment 1 Charmonium Spectroscopy The charmonium system has often been called the positronium of QCD. Non relativistic potential.
The PANDA Detector at FAIR
The Fermilab E760/E835 experiments (JETFNAL)
Open and Hidden Charm at PANDA
Plans for nucleon structure studies at PANDA
Samples of Hall B Results with Strong Italian Impact
Presentation transcript:

Introduction: Why is QCD so much fun? The Physics: Glue and Charm: Probing Non-Perturbative QCD with Antiprotons: The PANDA Experiment at FAIR Introduction: Why is QCD so much fun? The Physics: Glue and Charm: The Facility: FAIR Accelerator and Antiproton Cooler Ring Detector PANDA Summary and Outlook

Physics with Panda Glueballs (ggg) Hybrids (ccg) J/ spectroscopy confinement Proton Formfactor in the Timelike region Charmed hadrons in the nuclear medium CP-violation (D/ - sector) inverted deeply virtual Compton scattering

QCD: In Principle Simple  Coupling of Quarks to the Gluon fields Contains Self – coupling of Gluons Small coupling: perturbative QCD Large coupling: Lattice QCD Field theories with effective degrees of freedom

Running Coupling Constant transition from perturbative to non-perturbative regime Q2 [GeV2] 10 1 0.1 0.05 perturbative QCD constituent quark confinement mesons and baryons 0.3 Rn r [fm] perturbative strong QCD Of particular interest: Transition from the quark-gluon to the hadronic degrees of freedom

Physics with Panda Glueballs (ggg) Hybrids (ccg) J/ spectroscopy confinement Proton Formfactor in the Timelike region Charmed hadrons in the nuclear medium CP-violation (D/ - sector) inverted deeply virtual Compton scattering

Bound States of QCD

~ Simplified Lattice Approach Flux Tubes and Hybrids ~ Simplified Lattice Approach Meson Excitation of Flux Tube Additional angular momentum New (exotic) quantum numbers Bali, 1991 Hybrid

Charmonium Hybrids Predicted by bag models, flux tube models, constituent gluon models and LQCD. Three of the lowest lying cc hybrids have exotic JPC (0+-,1-+,2+-)  no mixing with nearby cc states Mass 4.2 – 4.5 GeV/c2. Charmonium hybrids expected to be much narrower than light hybrids (open charm decays suppressed). Cross sections for formation and production of charmonium hybrids similar to normal cc states (~ 100 – 150 pb). Excited gluon flux P CLEO S One-gluon exchange

Charmonium Hybrids Annihilation is a gluon rich process creates gluonic excitation in a direct way 2 complementary techniques Production (Fixed-Momentum) Formation (Broad- and Fine-Scans) Momentum range for a survey p ® ~15 GeV

Bound States of QCD

Heavy Glueballs unique identification difficult (mixing!) 2+- 0+- For light gg/ggg-systems: unique identification difficult (mixing!) Exotic heavy glueballs m(0+-) = 4140(50)(200) MeV m(2+-) = 4740(70)(230) MeV Flavor-blindness decay into charmed final states possible Morningstar,Peardon, PRD60(1999)34509 Morningstar,Peardon, PRD56(1997)4043

Physics with Panda Glueballs (ggg) Hybrids (ccg) Charmonium spectroscopy Confinement Proton Formfactor in the Timelike region Charmed hadrons in the nuclear medium CP-violation (D/ - sector) inverted deeply virtual Compton scattering

Charmonium: Positronium of QCD Mass [MeV] Binding energy [meV] 4100 y ¢¢¢ (4040) Ionization energy 3 P (~ 3940) 2 3900 D 3 S 3 S 3 3 D 3 P (~ 3880) 3 (~ 3800) 1 3 3 D 3 1 1 2 1 -1000 2 3 3 D 1 3 P (~ 3800) 1 D y ¢¢ (3770) 2 P 2 3 P 3 D D 2 3 D 2 1 S 2 3 S 1 2 3 2 3 1 1 2 3 P 1 2 1 ~ 600 meV 3700 y ¢ (3686) Threshold 2 3 P 10-4 eV -3000 h ¢ c (3590) c h (3525) 2 (3556) c c 3500 1 (3510) c (3415) -5000 3300 Charmonium ähnlicher Stellenwert wie Positronium bzw. Wasserstoffatom einfach (nicht-relativistisch) am besten verstanden 1 3 S 1 1 S 1 8·10-4 eV -7000 y (3097) 3100 e + 0.1 nm e - h 1 fm C c (2980) C 2900

Charmonium Physics Peculiar ψ(4040) 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0 3.4 4.1 4.8 5.5 6.3 7.1 8.0 Open questions … ψ(33S1) χc2(23P2) D*D* ψ(13D3) pp [GeV/c] Mcc [GeV/c2] ηc(31S0) Peculiar ψ(4040) χc1(23P1) DD* h1c(21P1) ψ(13D2) χc0(23P0) ψ(11D2) ψ(13D1) DD Terra incognita for 2P and 1D-States ψ(23S1) ηc(21S0) χc2(13P2) h1c(11P1) χc1(13P1) ηc’ - ψ(2S) splitting χc0(13P0) h1c – unconfirmed J/ψ(13S1) ηc – inconsistencies ηc(11S0) JP=0- 1- 1+ (0,1,2)+ 2- (1,2,3)-

Resonance cross section Advantage of Antiprotons e+e- annihilation via virtual photon: only states with JPC = 1-- in ppbar annihilation states with other quantum numbers can be formed Measured rate Beam Resonance cross section CM Energy Mass resolution is only limited by the beam momentum resolution

Recent discoveries: hc‘ (21S0) , X(3872) Discovery of the c(21S0) by Belle (+BaBar, CLEO). Discovery of a new narrow state above DD threshold X(3872) at Belle (+ CDF, D0, BaBar). M(c) = 3637.7  4.4 MeV/c2 _ What is the X(3872) ? Charmonium 13D2 or 13D3. D0D0* molecule. Charmonium hybrid (ccg). _ M = 3872.0  0.6  0.5 MeV/c2  2.3 MeV (90 % C.L.)

Physics with Panda Glueballs (ggg) Hybrids (ccg) J/ spectroscopy confinement Proton Formfactor in the Timelike region Charmed hadrons in the nuclear medium CP-violation (D/ - sector) inverted deeply virtual Compton scattering

Hadrons in Nuclear Matter Currently at GSI : many experiments devoted to the study of hadrons in nuclei and hadronic matter : in-medium modifications of hadron properties KAOS, deeply bound pionic atoms, HADES hadrons with light quarks (u,d,s)

How about Charm ? Mass splitting for D mesons expected ! Probes Measure excitation functions for D production on Nuclei with antiproton beam Modification of the width of Charmonium states near the D threshold

D – Mesons in Nuclear Matter Excitation functions Width of Charmonium States

   Charmonium in Nuclear Matter: Observables hc J/y cc 0,1,2 p _ ~ 1 fm    final state = e+e- / m+m- / gg / J/y g t ~ 10…20 fm/c t  10 fm/c (collisional broadening) hc J/y cc 0,1,2 y(3686) y(3770) Expected Mass shift -5 MeV to -8 MeV -7 MeV to -10 MeV 40 MeV to -60 MeV -100 MeV to -130 MeV -120 MeV to -140 MeV Channel g g e+e-/m+m- J/y g Predicted rates at L = 1032 cm-2s-1: few 10 … few 100 events/day S.H. Lee, nucl-th/0310080

J/y Absorption in Nuclei p + A  J/y + (A-1) ; detect J/y  m+m- (e+e-)  J/y absorption cross section in nuclear matter  Benchmark for the use of J/y suppression as signal for QGP _ e- e+ J/y p

Physics Summary: QCD Systems to be Studied with PANDA

The FAIR Facility (was: GSI)

HESR: High Energy Storage Ring Beam Momentum 1.5 - 15 GeV/c High Intensity Mode: Luminosity 2x1032 cm-2s-1 (2x107Hz) dp/p (st. cooling) ~10-4 High Resolution Mode: Luminosity 2x1031 cm-2s-1 dp/p (e- cooling) ~10-5

The PANDA Detector: Top View Length: ~2 m upstream, ~10 m downstream

Proposed Detector (Overview) High Rates Total σ ~ 55 mb Vertexing (σp,KS,Λ,…) Charged particle ID (e±,μ±,π±,p,…) Magnetic tracking Elm. Calorimetry (γ,π0,η) Forward capabilities (leading particles) Sophisticated Trigger(s)

Participating Institutes (with Representative in the Coordination Board) 45 Institutes from 12 Countries: U Basel IHEP Beijing U Bochum U Bonn U & INFN Brescia U & INFN Catania U Cracow GSI Darmstadt TU Dresden JINR Dubna (LIT,LPP,VBLHE) U Edinburgh U Erlangen NWU Evanston U & INFN Ferrara U Frankfurt LNF-INFN Frascati U & INFN Genova U Glasgow U Gießen KVI Groningen IKP Jülich I + II U Katowice IMP Lanzhou U Mainz U & Politecnico & INFN Milano U Minsk TU München U Münster BINP Novosibirsk U Pavia IHEP Protvino PNPI Gatchina U of Silesia U Stockholm KTH Stockholm U & INFN Torino Politechnico di Torino U Oriente, Torino U & INFN Trieste U Tübingen U & TSL Uppsala IMEP Vienna SINS Warsaw U Warsaw

Summary and Outlook The FAIR Project will include a dedicated antiproton facility World-class research covering the many facets of non-perturbative QCD Additional benefits Continuation of the ongoing GSI program investigating hadrons in dense matter Measurement of hadronic interaction cross section CRUCIAL for the interpretation of QGP signals (J/y suppression) The future beyond the future: Direct CP violation in the Charm sector Gravitation experiments with ultra-cold anti hydrogen CERN AD program with 100 times increased intensity and unprecedented beam quality!