Uplink HARQ Feedback Channel Design for IEEE802.16m Document Number: IEEE C802.16m-08/968 Date Submitted: 2008-09-05 Source: Dengkui Zhu

Slides:



Advertisements
Similar presentations
IEEE C802.16m-08/389r3 ProjectIEEE Broadband Wireless Access Working Group TitleUplink Resource Allocation Date Submitted.
Advertisements

ProjectIEEE Broadband Wireless Access Working Group TitleUplink Pilot Structure for IEEE802.16m Date Submitted
Modified pilot patterns for 8 data streams IEEE Presentation Submission Template (Rev. 9) Document Number: IEEE C80216m-09/1724 Date Submitted:
IEEE C802.16m-08/539 Coding for IEEE802.16m Document Number: IEEE C802.16m-08/539 Date Submitted: Source: Mohammed Nafie, Cairo University Ahmed.
Proposed Amendment Text for 8-Stream Pilot Pattern Document Number: IEEE C802.16m-09/0570 Date Submitted: Source: Chih-Yuan Lin
Frame structure supporting the WirelessMAN-OFDMA frames IEEE Presentation Submission Template (Rev. 9) Document Number: IEEE C80216m-09_0475r1 Date.
1 Random Sequence Generator Issue (AWD ) IEEE Presentation Submission Template (Rev. 9) Document Number: IEEE C80216m-09/1311r2 Date Submitted:
Sounding Antenna Switching for IEEE m Amendment Working Document IEEE Presentation Submission Template (Rev. 9) Document Number: IEEE C80216m-0848.
Scattered MIMO Pilot Allocation using cyclic shift IEEE Presentation Submission Template (Rev. 9) Document Number: IEEE S802.16m-08/068, Scattered.
8Tx Pilot Pattern Performance for IEEE m IEEE Presentation Submission Template (Rev. 9) Document Number: IEEE C802.16m-09/0544 Date Submitted:
Pilot Patterns for 16m 4x6 PUSC Tile Document Number: IEEE C802.16m-09/0139r1 Date Submitted: Source: Chih-Yuan Lin
16m Relay frame structure considering interfering issue IEEE Presentation Submission Template (Rev. 9) Document Number: IEEE C802.16m-08/1176r1.
1 Proposal for IEEE m DL Control Structure Document Number: IEEE C802.16m-08/1075r1 Date Submitted: Source: Sophie Vrzic, Mo-Han Fong,
1 MIMO Supports for IEEE m Broadcast Channel IEEE Presentation Submission Template (Rev. 9) Document Number: IEEE C802.16m-08/1416r1 Date.
1 Pilot Pattern for 8-Stream Transmission Document Number: IEEE C80216m-09/1138 Date Submitted: Source: Debdeep Chatterjee, Jong-kae (JK) Fwu,
Uplink Pilot Structure for IEEE802.16m Document Number: IEEE C802.16m-08/293r4 Date Submitted: Source: Mohammed Nafie, Cairo University Mohamed.
Title: Evaluation of DL MIMO Schemes: OL SU Spatial Multiplexing with 2-D MMSE channel estimation Document Number: IEEE C802.16m-08/1043r2 Date Submitted:
C80216m-08_213r1 ProjectIEEE Broadband Wireless Access Working Group TitleDesign Considerations for Downlink MIMO Pilot Date.
Preamble Requirements in IEEE802.16m IEEE Presentation Submission Template (Rev. 9) Document Number: IEEE C802.16m-08/485 Date Submitted:
Resource granularity for unicast and E-MBS FDM multiplexing IEEE Presentation Submission Template (Rev. 9) Document Number: IEEE C80216m-09_0405r1.
Modified Pilot Structure for WiMAX PUSC Permutation Scheme Document Number: C80216m-09_1109 Date Submitted: Source: Khalid Elwazeer Mohamed.
1 DL Unicast Service Control Channel Structure and High Level Design Document Number: IEEE C80216m-08/1270 Date Submitted: Source: Yi Hsuan,
C80216m-08_216 ProjectIEEE Broadband Wireless Access Working Group TitleDownlink Physical Resource Allocation Unit Date Submitted.
Distributed Sounding Channel – Simulation Results Document Number: IEEE C802.16m-09/0749 Date Submitted: Source: Bishwarup Mondal, Fan Wang,
Synchronization Drafting Group Schedule Document Number: IEEE C802.16m-09/0379 Date Submitted: Source: Paul Cheng
HARQ Architecture (Protocol and Timing) in IEEE m Document Number: IEEE S802.16m-08/411 Date Submitted: Source: Doo-hyun Sung, Hyungho.
Synchronous data-antennas mapping in MIMO HARQ System in IEEE m Document Number: IEEE S802.16m-08/573r2 Date Submitted: Source:
1 Comparison of DL Pilot Patterns IEEE Presentation Submission Template (Rev. 9) Document Number: IEEE C802.16m-08/798r1 Date Submitted:
DL Preamble Design for m Document Number: IEEE S802.16m-08/385 Date Submitted: Source: Sun Changyin, Liu Min, Wang Wenhuan,Yao
E-MBS Feedback Channel Design (E-MBS) Document Number: IEEE C802.16m-09/1877 Date Submitted: Source: Chih-Yuan Lin
Proposed Text on Section Miniband Permutation of m Amendment Document Number: IEEE C80216m-09_0623 Date Submitted: Source:
Uplink Control PHY Design for HARQ Tri-State Feedback IEEE Presentation Submission Template (Rev. 9) Document Number: IEEE S802.16m-09/0890r1 Date.
Synchronous non-adaptive Hybrid ARQ for distributed subcarrier mode Document Number: S80216m-08_290 Date Submitted: Source: Alexei Davydov Voice:
Hybrid ARQ for synchronous allocation in distributed subcarrier mode Document Number: S80216m-08_290r1 Date Submitted: Source: Alexei Davydov.
1 SDD Comments on PHY Segmentation for Multicarrier Operation Document Number: Slides S80216m-09/xxxx Date Submitted: Source: Lei Huang Panasonic.
C80216m-08_211 ProjectIEEE Broadband Wireless Access Working Group TitleTDM Downlink Mini-frame Control Channel Structure.
IEEE m Sounding Channel Designs Document Number: IEEE C802.16m-09/0140r1 Date Submitted: Source: Chih-Yuan Lin
Simulation Results for 8 Tx Antenna Pilots Document Number: IEEE C802.16m-09/0786 Date Submitted: Source: Jie Zhang
MIMO Ad-Hoc Group Report Document Number: IEEE C802.16m-09/2665r1 Date Submitted: Source: David Mazzarese MIMO.
Design Consideration for Irregular Subframe Allocation in m Network with Mixed CP Lengths Document Number: IEEE S802.16m-08/570r1 Date Submitted:
Performance comparison of Constellation Rearrangement and Bit Rearrangement IEEE Presentation Submission Template (Rev. 9) Document Number: IEEE.
Collaborative uplink MIMO techniques for IEEE m Document Number: C80216m-08/638 Date Submitted: 7/7/2008 Source: Mohamed Abdallah Mohammed Nafie.
1 Proposal of the UL Pilot Pattern IEEE Presentation Submission Template (Rev. 9) Document Number: IEEE C802.16m-08_977 Date Submitted:
Relay/EMBS Ad-Hoc Group Report Document Number: IEEE C802.16m-09/2678r1 Date Submitted: Source: Kanchei(Ken) Loa Relay/LBS/EMBS.
Multi-Level Codes Sequence for Simultaneous MCS Feedback IEEE Presentation Submission Template (Rev. 9) Document Number: IEEE S80216m-08/1152 Date.
System Level Performance of 8TX Measurement Pilot IEEE Presentation Submission Template (Rev. 9) Document Number: IEEE C802.16m-09/0808 Date Submitted:
1 Proposed Randomization for 16m Document Number: S80216m-09/1415 Date Submitted: Source: Changlong Xu, Tom Harel, Huaning Niu, Jong-Kae Fwu,
1 Comparison of Variable and Fixed MCS for DL Unicast Service Control Channel Document Number: IEEE C80216m-08/1269 Date Submitted: Source:
1 Proposed Randomization for 16m Document Number: S80216m-09/1415r1 Date Submitted: Source: Changlong Xu, Tom Harel, Huaning Niu, Jong-Kae Fwu,
UL Pilot Simulation Results Comparison Document Number: IEEE C802.16m-08_1204 Date Submitted: Source: tian qu hong yun.
Bandwidth Request Channel Physical Layer Design IEEE Presentation Submission Template (Rev. 9) Document Number: IEEE S802.16m-09/0222 Date Submitted:
Clarification on the Usage of Femtocell Over The Air (OTA) Signaling ( ) Document Number: IEEE C802.16m-09/2603 Date Submitted: Source:
Basic and Enhanced 2-bit HARQ Feedback IEEE Presentation Submission Template (Rev. 9) Document Number: IEEE S802.16m-09/0501r2 Date Submitted:
HARQ 1-bit Feedback Design IEEE Presentation Submission Template (Rev. 9) Document Number: IEEE S802.16m-09/0223 Date Submitted: Source:
Uplink 6x6 Pilot Pattern Comparison Document Number: IEEE C802.16m-08/1036r2 Date Submitted: Source: Chih-Yuan Lin
Uplink Pilot Structure for IEEE802.16m
Collaborative uplink MIMO techniques for IEEE m
Modulation and Coding set design for IEEE m system
Proposed PHY Structure for the IEEE m Bandwidth Request Channel
Comparison Between FDM and CDM Sounding Methods
Investigation on One- and Two-Stream BCH MIMO Schemes
UL Fast Feedback and HARQ Feedback Channel Structure
Investigation on one and two stream BCH MIMO Schemes
Uplink HARQ Feedback Channel Design for IEEE802.16m
Harmonized text proposal to SDD on UL HARQ Feedback Channel
Proposed PHY Structure for the IEEE m HARQ Feedback Channel
Zhu dengkui,Jerry Chow UL HARQ Feedback Channel Performance Comparisons of tile Format Options Document Number: C80216m-09_0158.
PHY Structure for UL Fast Feedback Channel in m Systems
HARQ Feedback Joint Coding
ARQ protocol in m IEEE Presentation Submission Template (Rev. 9)
Presentation transcript:

Uplink HARQ Feedback Channel Design for IEEE802.16m Document Number: IEEE C802.16m-08/968 Date Submitted: Source: Dengkui Zhu Yanfeng Guan Ying Liu zhaohua Lu Xiangyu Liu ZTE Corporation Venue PHY: Text; in response to the TGm Call for Contributions and Comments m-08/033 for Session 57 Base Contribution Purpose To be discussed and adopted by TGm for use in the IEEE m SDD Notice This document does not represent the agreed views of the IEEE Working Group or any of its subgroups. It represents only the views of the participants listed in the “Source(s)” field above. It is offered as a basis for discussion. It is not binding on the contributor(s), who reserve(s) the right to add, amend or withdraw material contained herein. Release: The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE’s name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE’s sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE Patent Policy: The contributor is familiar with the IEEE-SA Patent Policy and Procedures: 7.html#6 and. Further information is located at and.

Overview ACK Channel resource structure ACK channel design Simulation results Proposal Text

ACK Channel Structure(1) The SDD Text of IEEE C80216m-08/003r4 has described ACK Channel is FDM with data and other control channel. We suggest the basic resource unit in UL HARQ feedback channel should be consistent with data and other control channel for the convenient of resource permutation and mapping,so the structure of 18*6(Freq*Time) of LRU is also for the ACK channel. In the ACK channel, Distributed LRU(DLRU) should be employed for the reason that frequency diversity gain would be captured. As in figure 1,all the UL HARQ feedback channel in one UL subframe make up of UL HARQ feedback region in which DLRU is the resource unit. Figure1 UL HARQ feedback region

ACK Channel Structure(2) the structure of tile is 6 by 6 as in figure2. Tile 2 &3 is the repeat of tile1 in order to capture the freq diversity gain. Figure2: the structure of DLRU in HARQ feedback region

ACK Channel Design(1) Each tile of a DLRU is composed of a data zone which contain all the subcarrier of symbol 1,3,4,6,and a pilot zone which contain all the subcarrier of symbol 2,4 as in figure. CDM is used to multiplexing ACK channels in each DLRU, where is the freq spreading nums and is the time spreading nums. Each ACK channel transmits one ACK/NAK message. Each ACK channel corresponds to a freq domain spreading sequence and a time domain spreading sequence Figure3 Tile structure in HARQ feedback resource unit

ACK Channel Design(2) Each ACK channel corresponds a freq domain pilot sequence and a time domain pilots spreading sequence. is chosen from orthogonal sequence set, and is chose from orthogonal sequence set, is chosen from orthogonal sequence set, and is chosen from orthogonal sequence set. Each feedback message is modulated with BPSK/QPSK signal. when BPSK is used, each HARQ feedback channel transmits one ACK/NAK messages. when QPSK is used, each HARQ feedback channel transmits two ACK/NAK messages as MCW is used in MIMO.

ACK Channel Design(3) -data spread sequence select() The sequence in is chosen from the column of DFT matrix or ZC sequence. E.g. is chosen from as follows: is generate as follows: is chosen from as follows (1) (2) (3) (4)

ACK Channel Design(4) -pilot sequence select is chosen from the ZC sequence, and they must satisfy the condition that any one of the sequence of is circular of the other one. E.g. is chosen from as follows: is generate as follows: is chosen from as follows: (5) (6) (7) (8)

Simulation parameter Parameter value Carrier Frequency2.5GHz Antenna configuration1Tx,2Rx Channel ModelITU(PB,VA),TU Mobile speed3km/h,120km/h UL symbol18(one frame) HARQ feedback transmission unit num 30(one frame) 6*2 Detect methodSemi-Coherent Pilot boosting2.5dB ACK/NACK formatBPSK/QPSK

Simulation results From the simulation results, the SNR for per =1% is about -10dB for ITU PB3km/h channel, and about -7dB for ITU PB120km/h.

Proposal text Text proposed for IEEE C802.16m-08/003r start of proposed SDD text UL HARQ Feedback Control Channel PHY Structure All the UL HARQ feedback channel In the UL subframe make up of a HARQ feedback region in which, Distributed LRU (DLRU) is the basic HARQ feedback channel resource allocation unit. the DLRU is composed of three non-adjacent tiles(tile1 and tile2 and tile3). Tile2 and tile3 is the repeat of tile1 so as to capture frequency diversity gain. The structure of the tile is 6 continue OFDM symbol by 6 adjacent subcarrier in frequency. A HARQ feedback channel transmission unit is compose of three tiles. Each tile in the HARQ feedback channel transmission unit is divided into two parts as figure4, one is for effective data transmission which contain the 1,3,4,6th symbols while the rest of tile is for pilots. 12 HARQ feedback channel is CDM multiplexed in each UL HARQ feedback resource unit, 6times spread in frequency domain and 2 times spread in time domain. Each HARQ feedback channel corresponding one data spread sequence in frequency domain and one data spread sequence in time domain. Each HARQ feedback channel corresponding one pilot sequence in freq and one pilot sequence in time

Proposed Text (cont) data modulation and sequence mapping The feedback message UL HARQ feedback channel is modulated with BPSK/QPSK signals. The feedback message is spread in freq and time using relative spreading sequences and then mapping to the data zone of tile, the pilots sequence in freq is spead in time and then mapping to The pilot zone of tile end of proposed text

Proposed text (cont) Figure 4 Tile structure in DLRU Figure 5 structure of a tile