1 Estimating the upper wall loading in ITER Peter Stangeby with help from J Boedo 1, D Rudikov 1, A Leonard 1 and W Fundamenski 2 DIII-D 1 JET 2 10 th.

Slides:



Advertisements
Similar presentations
EUTFPWI Meeting 29-31/10/07 C.Lowry ITER Design Review Decisions Taken 5 Major Issues Identified 1.Blanket Redesign 2.Vertical Stability and Shape Control.
Advertisements

Alberto Loarte EU Plasma-Wall Interaction Task Force Meeting – CIEMAT – 10 – ITER Design Review Activities on Steady State and Transient Power.
Introduction to Plasma-Surface Interactions Lecture 6 Divertors.
ASIPP Characteristics of edge localized modes in the superconducting tokamak EAST M. Jiang Institute of Plasma Physics Chinese Academy of Sciences The.
Thermal Load Specifications from ITER C. Kessel ARIES Project Meeting, May 19, 2010 UCSD.
Barbora Gulejová 1 of 12 Centre de Recherches en Physique des Plasmas SPS Annual Meeting in Lausanne, 14/2/2006 SOLPS5 modelling of ELMing H-mode on TCV.
6th Japan Korea workshop July 2011, NIFS, Toki-city Japan Edge impurity transport study in stochastic layer of LHD and scrape-off layer of HL-2A.
First Wall Heat Loads Mike Ulrickson November 15, 2014.
Institute of Interfacial Process Engineering and Plasma Technology Gas-puff imaging of blob filaments at ASDEX Upgrade TTF Workshop.
A. Kirk, 21 st IAEA Fusion Energy Conference, Chengdu, China, October 2006 Evolution of the pedestal on MAST and the implications for ELM power loadings.
1 Edge Electrode Biasing Experiments on NSTX S. Zweben, C. Bush, R. Maqueda, L. Roquemore, R. Marasla M. Bell, J. Boedo, R. Kaita, Y. Ratises, B. Stratton.
A. Kirk, 20th IAEA Fusion Energy Conference, Vilamoura, Portugal, 2004 The structure of ELMS and the distribution of transient power loads in MAST Presented.
Alberto Loarte 10 th ITPA Divertor and SOL Physics Group Avila – Spain 7/10 – 1 – Update on Thermal Loads during disruptions and VDEs A. Loarte.
Paper O4.007, R. A. Pitts et al., 34th EPS Conference: 5 July 2007 Neoclassical and transport driven parallel SOL flows on TCV R. A. Pitts, J. Horacek.
Integrated Effects of Disruptions and ELMs on Divertor and Nearby Components Valeryi Sizyuk Ahmed Hassanein School of Nuclear Engineering Center for Materials.
R. A. Pitts et al., O-161 of 12PSI17, Heifei Anhui, China, 22-26/05/2006 Parallel SOL flow in TCV R. A. Pitts, J. Horacek, W. Fundamenski 1, A. Nielsen.
R. A. Pitts et al., O-8 18 th PSI, Toledo, Spain 27 May 2008 The Impact of large ELMs on JET Presented by R. A. Pitts CRPP-EPFL, Switzerland, Association.
Energy loss for grassy ELMs and effects of plasma rotation on the ELM characteristics in JT-60U N. Oyama 1), Y. Sakamoto 1), M. Takechi 1), A. Isayama.
W. Fundamenski, IAEA FEC 2004, Vilamoura, Portugal1 Power Exhaust on JET: An Overview of Dedicated Experiments W.Fundamenski, P.Andrew, T.Eich.
Barbora Gulejová 1 of 10 PSI 2008 abstract 5/12/2007 SOLPS modelling of Type I ELMing H-mode on JET Barbora Gulejová, Richard Pitts, David Coster, Xavier.
Barbora Gulejová 1 of 2 EPS 2007 material 20/6/2007 Time-dependent modelling of ELMing H-mode at TCV with SOLPS Barbora Gulejová, Richard Pitts, Xavier.
ELM filament structure in the National Spherical Torus Experiment R. J. Maqueda Nova Photonics Inc., New Jersey R. Maingi Oak Ridge National Laboratory,
D. Borba 1 21 st IAEA Fusion Energy Conference, Chengdu China 21 st October 2006 Excitation of Alfvén eigenmodes with sub-Alfvénic neutral beam ions in.
A. HerrmannITPA - Toronto /19 Filaments in the SOL and their impact to the first wall EURATOM - IPP Association, Garching, Germany A. Herrmann,
Recent JET Experiments and Science Issues Jim Strachan PPPL Students seminar Feb. 14, 2005 JET is presently world’s largest tokamak, being ½ linear dimension.
10th ITPA meeting on SOL & divertor physics, Avila, Spain, Jan 7-10, 2008 Arne Kallenbach 1/15 Prediction of wall fluxes and implications for ITER limiters.
H. Urano, H. Takenaga, T. Fujita, Y. Kamada, K. Kamiya, Y. Koide, N. Oyama, M. Yoshida and the JT-60 Team Japan Atomic Energy Agency JT-60U Tokamak: p.
6 th Japan-Korea Workshop on Theory and Simulation of Magnetic Fusion Plasmas Hyunsun Han, G. Park, Sumin Yi, and J.Y. Kim 3D MHD SIMULATIONS.
Divertor/SOL contribution IEA/ITPA meeting Naka Nov. 23, 2003 Status and proposals of IEA-LT/ITPA collaboration Multi-machine Experiments Presented by.
Simulation Study on behaviors of a detachment front in a divertor plasma: roles of the cross-field transport Makoto Nakamura Prof. Y. Ogawa, S. Togo, M.
Alberto Loarte 9 th ITPA Divertor and SOL Physics Meeting IPP-Garching 7-10/5/ Report on ITER Design Review Sub-group on : Heat and Particle Loads.
Edge Localized Modes propagation and fluctuations in the JET SOL region presented by Bruno Gonçalves EURATOM/IST, Portugal.
V. A. Soukhanovskii NSTX Team XP Review 31 January 2006 Princeton, NJ Supported by Office of Science Divertor heat flux reduction and detachment in lower.
DSOL ITPA meeting, Toronto W. Fundamenski8/11/2006 TF-E Size and amplitude scaling of ELM-wall interaction on JET and ITER W.Fundamenski and O.E.Garcia.
第16回 若手科学者によるプラズマ研究会 JAEA
0 NSTX College W&M Colorado Sch Mines Columbia U CompX General Atomics INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics New York U Old Dominion.
High  p experiments in JET and access to Type II/grassy ELMs G Saibene and JET TF S1 and TF S2 contributors Special thanks to to Drs Y Kamada and N Oyama.
ITPA DSOL meeting, Toronto W. Fundamenski9/11/2006 TF-E Introduction to ELM power exhaust: Overview of experimental observations W.Fundamenski Euratom/UKAEA.
14 Oct. 2009, S. Masuzaki 1/18 Edge Heat Transport in the Helical Divertor Configuration in LHD S. Masuzaki, M. Kobayashi, T. Murase, T. Morisaki, N. Ohyabu,
N. Fedorczak O-26 PSI 2010 San Diego 1 Nicolas Fedorczak Poloidal mapping of turbulent transport in SOL plasmas. G. Bonhomme,
1 Max-Planck-Institut für Plasmaphysik 10th ITPA meeting on SOL/Divertor Physics, 8/1/08, Avila ELM resolved measurements of W sputtering MPI für Plasmaphysik.
DIII-D SHOT #87009 Observes a Plasma Disruption During Neutral Beam Heating At High Plasma Beta Callen et.al, Phys. Plasmas 6, 2963 (1999) Rapid loss of.
D. Tskhakaya et al. 1 (13) PSI 18, Toledo July 2008 Kinetic simulations of the parallel transport in the JET Scrape-off Layer D. Tskhakaya, R.
1) Disruption heat loading 2) Progress on time-dependent modeling C. Kessel, PPPL ARIES Project Meeting, Bethesda, MD, 4/4/2011.
R. A. Pitts et al. 1 (12) IAEA, Chengdu Oct ELM transport in the JET scrape-off layer R. A. Pitts, P. Andrew, G. Arnoux, T.Eich, W. Fundamenski,
J. Boedo, UCSD Fast Probe Results and Plans By J. Boedo For the UCSD and NSTX Teams.
Parallel Correlation of SOL Turbulence S.J. Zweben, F. Scotti, J.W. Ahn, T. Gray, M. Jaworski, S. Kubota, R. Maqueda, N. Mandell, D. Smith, V. Soukhanovskii.
ELM propagation in Low- and High-field-side SOLs on JT-60U Nobuyuki Asakura 1) N.Ohno 2), H.Kawashima 1), H.Miyoshi 3), G.Matsunaga 1), N.Oyama 1), S.Takamura.
ASIPP, 24/ Modelling of near LH effects on the SOL, in view of extrapolation to ITER V. Petrzilka 1, G. Corrigan 2, P. Belo 3, A. Ekedahl 4, K.
1 EAST Recent Progress on Long Pulse Divertor Operation in EAST H.Y. Guo, J. Li, G.-N. Luo Z.W. Wu, X. Gao, S. Zhu and the EAST Team 19 th PSI Conference.
Integrated Simulation of ELM Energy Loss Determined by Pedestal MHD and SOL Transport N. Hayashi, T. Takizuka, T. Ozeki, N. Aiba, N. Oyama JAEA Naka TH/4-2.
Dependence of Pedestal Structure on Ip and Bt A. Diallo, R. Maingi, S. Zweben, B.P. LeBlanc, B. Stratton, J. Menard, S. Gerhardt, J. Canick, A. McClean,
P.C. Stangeby, et al. “ 13 C-Tracer Experiments in DIII-D” ITPA Meeting, Toronto, High Density H-mode 13 C-Tracer Experiments in DIII-D ITPA DSOL.
Biased Electrode Experiment S.J. Zweben, R.J. Maqueda, L. Roquemore, R.J. Marsala, Y. Raitses, R. Kaita, C. Bush R.H. Cohen, D.D. Ryutov, M. Umansky (LLNL)
ZHENG Guo-yao, FENG Kai-ming, SHENG Guang-zhao 1) Southwestern Institute of Physics, Chengdu Simulation of plasma parameters for HCSB-DEMO by 1.5D plasma.
ELM propagation and fluctuations characteristics in H- and L-mode SOL plasmas on JT-60U Nobuyuki Asakura 1) N.Ohno 2), H.Kawashima 1), H.Miyoshi 3), G.Matsunaga.
Fast response of the divertor plasma and PWI at ELMs in JT-60U 1. Temporal evolutions of electron temperature, density and carbon flux at ELMs (outer divertor)
Page 1 Alberto Loarte- NSTX Research Forum st - 3 rd December 2009  ELM control by RMP is foreseen in ITER to suppress or reduce size of ELM energy.
1 Peter de Vries – ITPA T meeting Culham – March 2010 P.C. de Vries 1,2, T.W. Versloot 1, A. Salmi 3, M-D. Hua 4, D.H. Howell 2, C. Giroud 2, V. Parail.
Alberto Loarte 7 th ITPA Divertor Meeting – Toronto 6/9 – 11 – ITER Issue Card FW-3. Modification of Upper Be-blanket modules, material and/or PFC.
1 V.A. Soukhanovskii/IAEA-FEC/Oct Developing Physics Basis for the Radiative Snowflake Divertor at DIII-D by V.A. Soukhanovskii 1, with S.L. Allen.
NIMROD Simulations of a DIII-D Plasma Disruption S. Kruger, D. Schnack (SAIC) April 27, 2004 Sherwood Fusion Theory Meeting, Missoula, MT.
L.R. Baylor 1, N. Commaux 1, T.C. Jernigan 1, S.J. Meitner 1, N. H. Brooks 2, S. K. Combs 1, T.E. Evans 2, M. E. Fenstermacher 3, R. C. Isler 1, C. J.
Member of the Helmholtz Association Meike Clever | Institute of Energy Research – Plasma Physics | Association EURATOM – FZJ Graduiertenkolleg 1203 Dynamics.
Mechanisms for losses during Edge Localised modes (ELMs)
Numerical investigation of H-mode threshold power by using LH transition models 8th Meeting of the ITPA Confinement Database & Modeling Topical Group.
Finite difference code for 3D edge modelling
Secondary divertor heat and particle flux
Heat flux width scaling in ITER limiter configurations
ITER consequences of JET 13C migration experiments Jim Strachan, PPPL Jan. 7, 2008 Modeled JET 13C migration for last 2 years- EPS 07 and NF paper in prep.
Presentation transcript:

1 Estimating the upper wall loading in ITER Peter Stangeby with help from J Boedo 1, D Rudikov 1, A Leonard 1 and W Fundamenski 2 DIII-D 1 JET 2 10 th ITPA SOL/divertor meeting Avila 7-10 January, 2008 U NIVERSITY OF T ORONTO Institute for Aerospace Studies 1 U NIVERSITY OF T ORONTO Institute for Aerospace Studies

2 Motivation How to shape the front faces of the blanket modules – particularly at the top where a 2 nd X-point tends to form – in order to handle the power load due to t, the time-averaged (through ELMs), normal operation, plasma parallel power flux density?

3 Questions What is the maximum t at: (a) the 2 nd separatrix? (b) the outside midplane? What fraction of the maximum t is due to ELMs? What is the uncertainty band on the estimated maximum t ? ____________________________________________ and what light can be shed on these questions by DIII-D experiments?

4 ITER Magnetic configuration in normal operation The 2 nd separatrix can be as close as 3 cm from the 1 st separatrix, allowing for mechanical uncertainty (1 cm). The most challenging location is therefore at the top. At the bottom the 2 nd separatrix strike points are in the divertor. Chris Lowry

5 Estimates by Lowry (presented at WG8 meeting 8/10/07) Type of InteractionUnits2001PIDLatest Proposal Outer Midplane Radiation┴MWm Power Conducted between ELMs װ MWm -2 None 3 Power Conducted by ELMs װ MWm -2 None (3.4) Energy Conducted by ELMs װ MJm -2 None0.19 (0.93)0.06 (1.7) Near second X-point Radiation┴MWm Power Conducted between ELMs װ MWm -2 None 5 MWm -2 Power Conducted by ELMs װ MWm -2 None MWm- 2 Energy Conducted by ELMs װ MJm -2 None0.77 (3.8)0.8 (17) Baffle Region MARFE┴MWm Lowry estimates based on work by Loarte and for ELMS, work of Fundamenski, Pitts, et al.

6 2 nd (upper) X-point region

7 Recent relevant DIII-D papers “Edge-localized mode dynamics and transport in the scrape-off layer of the DIII-D tokamak”, Boedo, et al, PoP 12 (2005) “Far SOL transport and main wall plasma interaction in DIII-D”, Rudakov, et al, NF 45 (2005) 1589.

8 A fast reciprocating probe at the DIII-D outer midplane. Rudakov

9 Fraction of particle and power wall fluxes due to ELMs Rudakov particles power fraction n e /n GW Power assumedwith γ = 7 and T e = T i. n e /n GW

10 Radial decay of peak burst ELM n e and T e Boedo n e /n GW = 0.8n e /n GW = 0.45 TeTe nene TeTe nene

11 v perp of ELM density front measured by reflectometry in DIII-D. v perp decreases from ~ 500 m/s at separatrix to ~ 120 m/s near the wall.

12 Comparing the DIII-D radial decay of ELM filaments with the Fundamenski model “A model of ELM filament energy evolution due to parallel losses”, Fundamenski, R A Pitts and JET EFDA contributors, PPCF 48 (2006) 109–156. This is a more sophisticated, numerical treatment of an analytic model in: “Cross-field blob transport in tokamak scrape-off-layer plasmas”, D’Ippolito, Myra and Krasheninnikov, PoP 9 (2002) 222.

13 Simple analytic model: sheath-limited, T e = T i, no time delay, etc. particle equation: energy equation: gives:

14 Between-ELM radial profiles. DIII-D. Shot Low density case: n e /n GW = n e [10 20 m -3 ] (thomson) T e [keV] (thomson) T i [keV] (CER) Tony Leonard

15 DIII-D. Shot Low density case: n e /n GW = Radial variation of the ELM burst peak T e and n e. temperaturedensity

16 DIII-D. Shot High density case: n e /n GW = 0.8. Radial variation of the ELM burst peak T e and n e. temperaturedensity

17 Conclusions An initial and limited comparison of DIII-D ELM filament data with the Loarte-Fundamenski-Lowry method of estimating power loads on the ITER wall was broadly and roughly confirmatory. Comparisons for more DIII-D shots needed. The DIII-D comparisons use measured. How reliably can we predict for ITER? Can we reliably estimate the maximum t at the 2 nd separatrix strike point to better than a factor of 3? 5? 10?