Simple Machines WHEEL AND AXLE PULLEYS. The Wheel and Axle The wheel and axle is another type of simple machine that moves objects across distances. Wheels.

Slides:



Advertisements
Similar presentations
Simple Machines and Mechanical Advantage
Advertisements

Simple Machines Give me a lever long enough, and a fulcrum on which to place it, and I will move the world. Aristotle.
What do simple machines do for us anyway?
WARM UP Have book on desk & ready for book check
Chapter 14: Machines.
The Simple Machines Screw Wedge Inclined Plane Pulley Wheel and Axle
Chapter 5 Lesson 3.
Lever, Wheel & Axle, and Pulley
Simple Machines.
Warm Up 1. What simple machine is a ladder?
Types of Simple Machines
Simple Machines. Would it require more work to take 100, 1kg books to the book room one at a time, or to take them in stacks of 20? Why?
Simple machines and mechanisms Lesson 5.0 and 5.1 Pages
Machines. Work and Power Power is the rate at which work is done Power = Work time Remember that W = Fd So, Power = Fd t Power is measured in Watts –1.
Work & Machines. Topics Work and Power –Definition, Calculation, and Measurement Using Machines –Nature of Machines –Mechanical Advantage –Efficiency.
Simple Machines The six types of simple machines are:
1 Work and Simple Machines. 2 What is work?  In science, the word work has a different meaning than you may be familiar with.  The scientific definition.
How Tools Work. The Six Simple Machines  Lever  Inclined Plane  Wedge  Screw  Pulley  Wheel and Axle.
Work and Machines Chapter 5 Sec 2. What is a Machine?  Any device that makes work easier.
OBJECTIVES 05-1 Explain the meaning of work. Describe how work and energy are related. Calculate work. Calculate power.
Work and Simple Machines
12.3 Simple Machines.
S8P3. Students will investigate relationship between force, mass, and the motion of objects. c. Demonstrate the effect of simple machines (lever, inclined.
Work and Machines Chapter 14
Simple Machines They make life easy breezy…. Simple Machines Ancient people invented simple machines that would help them overcome resistive forces and.
Simple Machines 5.3 Physical Science.
Pulleys A Pulley is a grooved wheel with a rope, chain, or cable running along the groove Change the direction of an applied force Transmit rotational.
Simple Machines and Mechanical Advantage Simple Machines Ancient people invented simple machines that would help them overcome resistive forces and allow.
Work and Simple Machines
Simple Machines & Their Mechanical Advantages. Wedge It is used to push an object(s) apart. It is made up of two inclined planes. These planes meet and.
Lever A lever is a bar that is free to turn, about a fixed point.
Machines Making Work Easier.
Work & Simple Machines Review. Define / Describe WORK.
Classification of simple machines: Simple machines are divided into two families: 1)The Lever family and 2) The inclined plane family.
Machine- a device that makes work easier by changing the direction or size of the force.
Chapter 5: Machines II. The Simple Machines Inclined Plane Lever Screw
Simple Machines. Types of Simple Machines How do machines make work easier? Machines make work easier by: multiplying the size of the force you exert.
Work and Machines. What is Work? Work is force times distance. To be exact, work is force times the distance moved in the direction of the force. The.
Simple Machines Work and Simple Machines What is a Simple Machine?  A simple machine has few or no moving parts.  Simple machines make work easier.
The 6 Simple Machines Lever Pulley Wheel and Axle WedgeScrew Inclined Plane.
Work, Machines, and Energy. Work and Power  Work is done if (1) an object moves, and (2) if a force acts in the same direction that the object moves.
The 6 Simple Machines Lever Pulley Wheel and Axle WedgeScrew Inclined Plane.
MORE SIMPLE MACHINES. WHEEL AND AXLE What is it? 2 circular or cylindrical objects fastened together that rotate about a common axis How it works Smaller.
Mechanisms Simple Machines Lever, Wheel and Axle, & Pulley.
1 Simple Machines Ancient people invented simple machines that would help them overcome resistive forces and allow them to do the desired work against.
Physical Science Chapter 5 Work and Machines 1 Note to self: Find videos.
6.3 – Simple Machines.
Simple Machines.
The 6 Simple Machines Screw Wedge Inclined Plane Pulley Wheel and Axle
How are simple machines similar and different?. Simple Machine A machine that does work with only one movement. Compound Machine A machine made up of.
Honda Rube Goldberg 1 2 Rube Goldberg/Simple Machines.
Chapter 5 Machines and Mechanical Systems. Forces in Machines How do you move something that is too heavy to carry? How were the pyramids built? Simple.
The Red Group’s Week. Wheel and Axle A wheel and axle is a simple machine made of two circular and cylindrical objects fastened together that rotate about.
Warm Up: 1/14/13  Give an example of a machine you use on a daily basis. Then say how you thinks it helps to make work easier.
LEVERS:. Pulleys  A pulley is a simple machine that is made up of a single wheel and an axel.  The wheel has a groove around it so a rope or cable can.
Chapter Nine: Simple Machines
Topic 2: The Wheel and Axle, Gears, and Pulleys
The 6 Simple Machines Lever Pulley Wheel and Axle WedgeScrew Inclined Plane.
GPS Standards S8CS5a: Observe and explain how parts can be related to other parts in a system such as the role of simple machines in complex (compound)
Physical Chapter Seven Simple Machines Levers Pulleys Inclined Planes Screws Wheel & Axle Wedge Compound Machines.
Chapter 7 Review.
Simple Machines, Mechanical Advantage, and Work. Machines  Machines make work easier by changing direction of a force, multiplying a force, or increasing.
Types of Machines Levers Simple machine that has a bar that pivots at a fixed point This fixed point is called the fulcrum The load Input force 3 Types.
Chapter 15 Machines What is a simple machine? People use machines to make work easier They allow a person to -change the size of the force -change.
TYPES OF LEVERS There are three types or classes of levers, according to where the load and effort are located with respect to the fulcrum.
The 6 Simple Machines Screw Wedge Inclined Plane Pulley Wheel and Axle
MACHINE NOTES.
Simple Machines Ancient people invented simple machines that would help them overcome resistive forces and allow them to do the desired work against those.
Chapter 5 Lesson 3.
Simple Machines Chapter 12 Section 3.
Presentation transcript:

Simple Machines WHEEL AND AXLE PULLEYS

The Wheel and Axle The wheel and axle is another type of simple machine that moves objects across distances. Wheels help move objects along the ground by decreasing the amount of friction between what is being moved and the surface. The work of this simple machine can result from the larger wheel being utilized to turn a smaller axle wheel. The bigger the wheel, the greater the twisting force (torque) that can be applied to the axle.

The Wheel and Axle Work can also result when an axle is used to rotate wheels, such as the example of a rear axle and wheels of a truck. The effort (force) is applied to the axle at a point close to where the axle turns. This can be equated as the effort (force) distance. When effort (force) is applied to the axle, the mechanical advantage will be less than one but the speed is enhanced. The distance between the point where the wheel touches the ground and the point where the wheel turns can be called the resistance force (load) distance. These two distances are equal to the radius of the axle and the radius of the wheel, respectively.

The Wheel and Axle To calculate the mechanical advantage of a wheel and axle assembly divide the radius of the wheel by the radius of the axle. Example: What is the mechanical advantage provided by a car's steering wheel assembly when the radius of the steering wheel is 6 inches and the radius of the axle is 1 inch?

The Wheel and Axle Effort (force) is being applied to the steering wheel and therefore multiplied, providing torque on the axle six times greater than the effort (force) applied to the wheel. The trade-off, however, is that the steering wheel travels six times farther than the axle does during one full rotation. Use the formula below to calculate the amount of effort (force) required when using this simple machine. Effort × Circumference = Resistance Force × Circumference (Force) × (Wheel) = (Load) × (Axle)

In the drawing below of a well crank (windlass), the handle is attached to a 2-inch radius axle. The turning circumference of the crank is 16 inches. How much effort (force) is required to lift a bucket of water weighing 40 pounds?

The Pulley A pulley can be considered as a circular lever. ◦It is a wheel with a grooved rim and axle with a rope, belt, or chain attached to it in order to change the direction of the pull and lift a load. The effort (force) distance is the radius of the pulley (length from the axle to the side of the rope being pulled). The resistance force (load) distance is the radius of the pulley from the axle to the load-carrying side of the rope. Pulleys are used to lift heavy loads and can be found in block and tackles, cranes, hydraulic systems, and chain hoists. They change the direction of effort (force) making it easier to lift the object or they enhance the effort (force). Mechanical advantage for pulley systems can be found using the following formulas: Or

Types of Pulleys There are three types of pulleys:  fixed  moveable  compound The mechanical advantage of pulley systems depends on the number of ropes, chains, etc. supporting the load. For example, using two supporting ropes to lift a resistance force (load) of 40 pounds would give you a mechanical advantage of 2.

Fixed (Single)Pulley A fixed (single) pulley is attached to a stationary object like a wall or ceiling. It acts as a first-class lever having the fulcrum at the axis and the rope acting as the bar. Fixed (single) pulleys only change effort (force) direction (you can pull down on the rope to lift the load instead of pushing up on it). They do not enhance the effort (force). ◦Effort (force) distance equals resistance force (load) distance and, therefore, each foot of pull on the rope will lift the load one foot. It provides no mechanical advantage (MA = 1). ◦Example: The fixed (single) pulley has a resistance force (load) at one end of the rope. The other end must have effort (force) applied downward to raise the load. The effort (force) is equal to the load in this pulley system and there is no mechanical advantage, with the MA equal to 1.

Movable Pulley A movable pulley moves up and down with the effort (force). It acts as a second-class lever having the resistance force (load) between the fulcrum and the effort (force). Unlike the fixed (single) pulley, it cannot change the direction of the effort (force). Moveable pulleys, however, enhance effort (force). Their mechanical advantage is greater than 1. The trade-off is that the effort (force) distance is greater than the resistance force (load) distance. The moveable pulley has the resistance force (load) supported by both the rope ends (the rope end attached to the upper bar and the rope end to be pulled effort [force] in the upward direction). The two upward tensions are equal and opposite in direction to the load. The mechanical advantage is 2.

Compound Pulley A compound pulley utilizes both a fixed (single) pulley and a movable pulley. Compound pulleys provide both a change in the direction of the effort (force) as well as dramatically decreasing the effort (force) required to lift the resistance force (load). The mechanical advantage of this type of pulley is 2. The effort (force) distance, however, like with the moveable pulley, will be greater than the resistance force (load) distance. Note: The mechanical advantage of pulley systems can also be calculated visually by counting the number of ropes, chains, etc. supporting the load. For example, in the illustration of the compound pulley, there are two supporting ropes to lift the resistance force (load), giving the pulley system a mechanical advantage of 2.

Compound Pulley Block and Tackle A T of several fixed and moveable pulleys is known as a block and tackle. Archimedes showed that by using multiple pulleys, a large ship fully loaded with men could be pulled by a single man's effort.

Efficiency of a Pulley System 1.To calculate the efficiency of a pulley system, first determine the mechanical advantage. 2.Next, determine the velocity ratio by dividing the distance moved by effort (force) by the distance moved by the resistance force (load). 3.Finally, divide the mechanical advantage by the velocity ratio and multiply this number by 100 percent. Example: A pulley system can lift an object weighing 50 N with an effort (force) of 10 N. The input distance is 5 m and the output distance is 0.5 m. What is the efficiency of the pulley system?