Masses in the cosmos measurement programs comparisons mass models facing the challenge Nuclei in the Cosmos – IX 25-30 June 2006 CERN, Geneva David Lunney.

Slides:



Advertisements
Similar presentations
Atomic masses – Competition worldwide K. Blaum, Phys. Rep. 425, 1-78 (2006) Penning-trap mass spectrometry groups for stable masses: D. Pritchard, MIT.
Advertisements

Structure of the ECEC candidate daughter 112 Cd P.E. Garrett University of Guelph TRIUMF Excellence Cluster “Universe”, Technische Universität München.
Penning-Trap Mass Spectrometry for Neutrino Physics
EURISOL_DS – Task 11 Subtask 5 Neutron- and proton-induced reactions up to Fermi energy J. Äystö / V. Rubchenya JYFL, Jyväskylä (P9) / KhRI, St.Petersburg.
Γ spectroscopy of neutron-rich 95,96 Rb nuclei by the incomplete fusion reaction of 94 Kr on 7 Li Simone Bottoni University of Milan Mini Workshop 1°-
Mass measurements on neutron-rich nuclei with the CPT mass CARIBU Kumar S. Sharma Department of Physics and Astronomy Winnipeg MB.
The ion trap facility SHIPTRAP at GSI Status and Perspectives Michael Block for the SHIPTRAP collaboration.
ROGER CABALLERO FOLCH, Barcelona, 9 th November 2011.
Radioactive Ion Beams: where are we now experimentally? M. Huyse K.U. Leuven Moriond, March 2003 Opening page.
Hans Geissel, Pisa05 Precision Experiments with Exotic Nuclei at Relativistic Energies Hans Geissel, GSI and JLU Giessen  Introduction  Precision Measurements:
FRS-ESR Experiments Collaboration. Measured Mass Surface Masses of more than 1100 Nuclides were measured Mass accuracy: SMS 1.5 ∙10 -7 up to 4 ∙10 -8.
The Atomic Mass Evaluation: Present and Future WANG Meng Institute of Modern Physics, CAS ARIS2014, Tokyo, June 2.
The LaSpec project. At FAIR… Cheapest(?),Fully destripped…
Limits of Stability Neutron Drip Line? Proton Drip Line? Known Nuclei Heavy Elements? Fission Limit?
Overview of Recent Highlights from ISOL Facilities Juha Äystö Department of Physics, University of Jyväskylä & Helsinki Institute of Physics Finland Introduction.
B. Sun, Minischool on the Physics of NUSTAR, June 8-11, 2009 Mass Measurement Collaboration G. Audi, K. Beckert, P. Beller, F. Bosch, D. Boutin, T. Buervenich,
Experiments with Stored Exotic Nuclei at Relativistic Energies  The Experimental Facility  Mass measurements  Lifetime measurements  Future Hans Geissel,
1 TCP06 Parksville 8/5/06 Electron capture branching ratios for the nuclear matrix elements in double-beta decay using TITAN ◆ Nuclear matrix elements.
Noyaux CERN- ISOLDE Yorick Blumenfeld.
N=126 factory Guy Savard Scientific Director of ATLAS Argonne National Laboratory & University of Chicago ATLAS Users Meeting ANL, May 15-16, 2014.
Alexander Herlert High-precision mass measurements on exotic nuclides: recent results from the ISOLTRAP experiment CERN, PH-IS EP Seminar, CERN, May 15,
TITAN Mass Measurement of 11 Li (and other halo nuclei) Ryan Ringle, TRIUMF.
Preparation of an isomerically pure beam and future experiments Outline TAS Workshop, Caen, March 30-31, 2004 Klaus Blaum for the ISOLTRAP Collaboration.
Nuclear physics: the ISOLDE facility
CERN NuPAC meeting Dec 2005 The future of ISOLDE: accelerated radioactive beams Peter Butler 1.HIE-ISOLDE 2.EURISOL.
Radioactive ion beam facilities How does they work ? 2012 Student Practice in JINR Fields of Research 9.oct.2012 I. Sivacekflerovlab.jinr.ru.
Mass measurements using low energy ion beams -1- C. Thibault 31 mars 2004 Motivations to measure masses Present status Experimental methods for direct.
Ning Wang 1, Min Liu 1, Xi-Zhen Wu 2, Jie Meng 3 Isospin effect in Weizsaecker-Skyrme mass formula ISPUN14, , Ho Chi Minh City 1 Guangxi Normal.
-NUCLEUS INTERACTIONS OPEN QUESTIONS and FUTURE PROJECTS Cristina VOLPE Institut de Physique Nucléaire Orsay, France.
28. November 2005 Fission product yield measurements with JYFLTRAP A novel application of a Penning trap H. Penttilä, J. Äystö, V.-V. Elomaa, T. Eronen,
Yu. Oganessian FLNR (JINR) PAC–meeting, June 22, 2009, Dubna Experimental activities and main results of the researches at FLNR (JINR) Theme: Synthesis.
1 stephan ettenauer for the TITAN collaboration Experimental Program on Halo Nuclei with non-accelerated Beams at TRIUMF Weakly Bound Systems in Atomic.
The REXTRAP Penning Trap Pierre Delahaye, CERN/ISOLDE Friedhelm Ames, Pierre Delahaye, Fredrik Wenander and the REXISOLDE collaboration TAS workshop, LPC.
Masses of tripline nuclei Frank Herfurth, ISOLDE/CERN.
B-1 Fragmentation – 0 Introduction Generalities Isotopic distributions Neck emission Participant-spectator model Fragment separators LISE of GANIL FRS.
JRA10 Instrumentation for Precise Nuclear Measurements with Trapped Ion Techniques
I. Introductory remarks and present status II. Laboratory experiments and astrophysics III. Future options scenarios status and challenges new developments.
Neutrino-related nuclear mass difference measurements with a few 10 eV uncertainty at SHIPTRAP Enrique MINAYA RAMIREZ Max-Planck-Institut für Kernphysik,
Ning Wang An improved nuclear mass formula Guangxi Normal University, Guilin, China KITPC , Beijing.
Nanuf03, Bucharest, Stefan Kopecky Traps for fission product ions at IGISOL Experimental Facilities Mass Measurements Status and Future Perspectives.
Β decay of 69 Kr and 73 Sr and the rp process Bertram Blank CEN Bordeaux-Gradignan.
Progress in  half lives of nuclei approaching the r-process path at N=126 José Benlliure Universidad de Santiago de Compostela, Spain INPC 2007.
Outline Sebastian George Tokyo 2007 High-Precision Mass Spectrometry
- Introduction - High-Resolution and High Accuracy Mass Spectrometry - Half-Life Measurements - Summary and Outlook Nuclear Properties far off Stability.
Precision Measurements of Very-Short Lived Nuclei Using an Advances Trapping System for Highly-Charged Ions q / A - selectionCooling processMass measurement.
TOF Mass Measurements: Status and Future (or When the Masses of the R-Process Nuclides will be Measured?) Milan MATOŠ JINA Frontiers August 20, 2007.
1 CNS summer school 2002 The RI-Beam Factory and Recent Development in Superheavy Elements Search at RIKEN ◆ Brief introduction to the RI Beam Factory.
Trends in Heavy Ion Physics Research, Dubna, May Present and future physics possibilities at ISOLDE Karsten Riisager PH Department, CERN
High-precision mass measurements below 48 Ca and in the rare-earth region to investigate the proton-neutron interaction Proposal to the ISOLDE and NToF.
Precision mass measurements of n-rich nuclei between N=50 and 82. Short overview on the experimental approach Penning trap mass measurements on n-rich.
Georg Bollen Michigan State University Facility for Rare Isotope Beams ISOLDE Preparing for New Science Opportunities.
The HITRAP Project at GSI For the HITRAP collaboration: Frank Herfurth GSI Darmstadt.
G. Bollen, INTC-NUPAC Meeting, CERN, Geneva, October 2005 Overview and Motivation Mass Measurements at ISOLDE … … and elsewhere Conclusions Mass Measurements.
Present Status of AME and NUBASE Meng WANG CSNSM, Orsay, France IMP,Lanzhou,China April 6, 2011, Vienna.
R.Burcu Cakirli*, L. Amon, G. Audi, D. Beck, K. Blaum, Ch. Böhm, Ch. Borgmann, M. Breitenfeldt, R.F. Casten, S. George, F. Herfurth, A. Herlert, M. Kowalska,
Alexander Herlert High-precision mass measurements for reliable nuclear-astrophysics calculations CERN, PH-IS NIC-IX, CERN, Geneva, June 29, 2006.
Nuclear physics: the ISOLDE facility Magdalena Kowalska CERN, PH-Dept. on behalf of the CERN ISOLDE team Lecture 2:
Nuclear Mass Measurement and Evaluation WANG Meng Institute of Modern Physics, CAS 1st International Workshop on Nuclear Structure, Hadron Physics and.
TRIGA-SPEC: Developement platform for MATS and LaSpec at FAIR Double-beta transition Q-value measurements with TRIGA-TRAP NUSTAR Meeting Christian.
How can one produce rare isotopes? Question Slid 3 Hendrik Schatz NNPSS 2012, Slide 3 Rare Isotope Production Techniques: Uniqueness of FRIB Target spallation.
Michael Dworschak, GSI for the SHIPTRAP collaboration
FIDIPRO-JSPS Workshop, Keurusselkä , AriJokinen, JYFL Nuclear structure probed by precision atomic mass measurements in a Penning trap Ari.
Max-Planck-Institut für Kernphysik, Heidelberg Zhuang GE RIKEN, Wako, Japan Mass measurements of short-lived nuclides at storage rings in Asia and its.
1 Atomic Mass Evaluation Meng WANG (王猛) CSNSM-CNRS, France MPIK-Heidelberg, Germany IMP-CAS, China 5 th FCPPL workshop.
Isochronous mass measurements of 58 Ni projectile fragments at CSRe Xinliang Yan Precision nuclear spectroscope group Institute of Modern Physics, Chinese.
Precision Tests of Fundamental Interactions with Ion Trap Experiments
Alexander Herlert, CERN (PH-SME-IS)
Masses of noble gases David Lunney CERN contact: Sarah Naimi, CSNSM
Precision Measurements of Very-Short Lived Nuclei
High-precision mass measurements of exotic nuclides:
Presentation transcript:

masses in the cosmos measurement programs comparisons mass models facing the challenge Nuclei in the Cosmos – IX June 2006 CERN, Geneva David Lunney – CSNSM (IN2P3/CNRS) – Université de Paris Sud, Orsay

High resolution mass spectrographs Development of first mass model C. F. v. Weizsäcker, H.A. Bethe (1935/36) F.W.Aston (~1920‘s): 212 isotopes discovered Packing fraction Some introductory remarks on history How the sun shines,” J. Bahcall E = mc 2 A. Eddington (~1920) Stellar combustion

Motivation from “fundamental” physics metrology: the kilogram: 28 Si atomic mass standard and other fundamental constants (what if they vary with time?!)

nuclear structure from the mass surface

known masses r-process path   decay path  decay one / two -delayed neutron decay p-isotope s r Pb Tl Hg Hf Lu Yb Tm Er Au Pt Ir Os Re W Ta Po Bi At neutron number126 s stable isotopes -process path    Stellar Nucleosynthesis (A  200)

Techniques Indirect (energy) reactions: A(a,b)B Q = M A + M a - M b - M B decays: A  B +  Q  = M   M  Direct (mass spectrometry) time of flight: TOF = (m/q) (L/B  ) cyclotron frequency: f c = qB/m ISOL (keV) FIFS (MeV) PRODUCTION SCHEME better precision better sensitivity ‘the best of both worlds’ gas cell RFQ

ESR-FRS (GSI) SPEG CSS2 (GANIL) ISOLTRAP (CERN) MISTRAL (CERN) FSU- TRAP (MIT) UW-PTMS

mass measurement programs at GANIL CSS1 SPEG Resolving power: 10 4 extremely sensitive SPEG time-of-flight + magnetic rigidity m = q B  T / L H. Savajols et al., EPJ A 25 (2005) 23 and B. Jurado et al., submitted (2006) X Y Z

mass measurement programs at GANIL CSS1 CSS2 time-of-flight: phase difference with acceleration (longer flight path) M. Chartier et al., J. Phy. G 31 (2005) S1771

mass measurement programs at GANIL CIME (SPIRAL) time-of-flight: variable RF acceleration (longer flight path) M.-B. Gomes Hornillos et al., J. Phy. G 31 (2005) S1869

mass measurement programs at GSI Isochronous Mode very fast but not as precise Schottky Mode very precise but cooling slow Experimental Storage Ring:  m/q)/(m/q)   v/v (  t 2   2 )   f/f  t 2

IMS 2002 M. Matos, Ph.D (2004) SMS 2002 E. Kaza, Ph.D (2004) Yu. Litvinov, Ph.D. (2003): ~ 600 species in the ring 466 masses measured (117 calibration masses) 139 masses from links 200 improved masses 75 new mass values IMS J. Stadlmann (Ph.D) and Phys. Lett. B (2004) see talk of F. Bosch Yu. Novikov et al., Nucl Phys A (2002) Yu. Litvinov et al., (2005)

Linac2 50 MeV Booster 1.4 GeV PS

ISOLDE CERN, Geneva proton beam 1 GeV HRS GPS REX-ISOLDE MISTRAL ISOL- TRAP 10 m

COLETTE Paul trap MISTRAL Detector Quadrupole Doublet ISOLDE Beam Reference Source 1 m MISTRAL 2005 * D.E. Alburger et al. Phys. Rev. C 18, 2727 (1978) Alburger 78 * Mass Excess (keV) 12 Be (T 1/2 = 21 ms)

1 m The mass spectrometer ISOLTRAP 2 cm hyperbolic Penning trap: precision mass measurement cylindrical Penning trap: isobar separa- tion & cooling 20 cm Gas-filled RF-Paul trap: universal beam collector low energy bunches continuous 60 keV ISOLDE beam see talk of A. Herlert

SHIPTRAP (GSI) CPT (ANL) LEBIT (NSCL) TITAN (TRIUMF) ISOLTRAP (CERN) (RIKENRING) JYFLTRAP MATS (FAIR) or “what ISOLTRAP hath wrought” SMILETRAP (MSI) MAFFTRAP

Canadian Penning Trap (CPT) facility at ANL 46 V  46 Ti : Savard et al., PRL (2005) (not available from ISOLDE) See poster here. beam

trap cooler ion guide mass separator JYFLTRAP at the Jyväskylä IGISOL ISOLDE elements See poster of A. Jokinen IGISOL elements

SHIPTRAP facility at GSI ISOL facility for transuranium nuclides 92 Mo ( 58 Ni,xpyn) 147 Ho  new masses for 147 Ho, 147,148 Er (  10  6 ) (M. Block et al., ENAM04) see poster here

Low Energy Beam & Ion Trap (LEBIT) facility at NSCL/MSU G. Bollen et al., PRL 96 (2006)

M. Matoš (CGS-12, Notre Dame) AIP Conf. Proc. 819 (2006) 164 See poster of A. Estrade 86 Kr primary beam

cyclotron target separator post- accelerator magnet

Reviews of Modern Physics, 75 (2003) 1021

ENAM04 Proc., Eur. Phys. J. A, 25 (2005) 3

Proc. Nuclei in the Cosmos IX, PoS (2006) ?

 Performance of the various methods See: Lunney, Pearson & Thibault, Rev. Mod. Phys. 75 (2003) 1021

MAFF facility at FRM-II M ünich A ccelerator for F ission F ragments trap n-rich nuclides trap funnel Bavarium D. Habs et al., ENAM 2004 (MAFF workshop 04/2005)

ISAC beam TRIUMF Ion Trap (TITAN) facility Paul trap Cooling and Bunching (1-5ms) EBIT Rapid charge breeding (2-30 ms) Wien filter m/q selection Penning trap Precision mass measurement (~ ms) J. Dilling et al. ENAM04 Mass measurements T 1/2 ≈10 ms  m/m < 1  Operational 2006 f c = qB/m

Beyond the horizon GSI ’s future Facility for Antiproton and Ion Research (FAIR) FAIRTRAP (MATS) FAIR RINGS (ILIMA)

stellar nucleosynthesis

The atomic mass evaluation* * G. Audi and A.H. Wapstra, Nuclear Physics 1988, 1993, 1995, 2003 S P Si Al Al (p,  ) 28 Si 28 Si ( 3 He, 8 Li) 23 Al 28 Si ( 4 He, 8 He) 24 Si 28 Si (p,t) 26 Si 28 Si (p,n) 28 P 28 Si (d,p) 29 Si 28 Si (p,  ) 29 P 28 Si (  +,  - ) 28 S 31 P (p,  ) 28 Si and 28 Si / 12 C Not a compilation !

The Mass Evaluation. 28 Si. 1 = Si... Audi-Wapstra mass table 5520 experimental data (186 rejected) plus 601 estimated data 3652 equations; 3017 parameters 1920 ground state masses plus 730 recommed values least squares mass adjustment (1993)

A simplified overview of mass models microscopic sculpturings of a macroscopic blob (FRDM) algebraic formulas (Garvey-Kelson; IMME) microscopic nucleon-nucleon interaction (RMF / HFB) physics input ease of use Extended Thomas-Fermi Strutinki Integral model macro: TF Skyrme approximation micro: Strutinski correction (folded Skyrme) 9 parameters good mass fit most nuclear properties now full HFB HFBCS:S. Goriely et al., At. Nuc. Data (2001) HFB 1:M. Samyn et al., Nucl. Physics (2002) HFB 2:S. Goriely et al., Phys. Rev. C (2002) HFB 3:M. Samyn et al., Nucl. Physics (2003) HFB 4-7:S. Goriely et al., Phys. Rev. C (2003) HFB 8:M. Samyn et al., Phys. Rev. C (2004) HFB...

Fit to 1995 AME (1768 masses) local models Only 60% masses fit mass data parameters + other data parameters Chaos-limited mass prediction?

D. Lunney et al., ENAM 1995 (Arles) mass model comparisons

From: D. Lunney, “Nuclear masses: Experimental programs, theoretical models and astrophysical interest,” p. 296

Conclusions Mass Models microscopic era; real need for data (diagnostic tool) Kierkegaard: I must find a truth that is true for me. Mass Measurements higher performance; programs multiplying  more data, better quality Lichtenberg: To find something new, must build something new. Mass Evaluation global benchmark (last judgement) “A false balance is abomination to the Lord: but a just weight is his delight.” — Proverbs 11.1 “ The construction of the universe is certainly much easier to explain than that of a plant ”.