Presentation is loading. Please wait.

Presentation is loading. Please wait.

EE 5340 Semiconductor Device Theory Lecture 23 – Spring 2011 Professor Ronald L. Carter

Similar presentations


Presentation on theme: "EE 5340 Semiconductor Device Theory Lecture 23 – Spring 2011 Professor Ronald L. Carter"— Presentation transcript:

1 EE 5340 Semiconductor Device Theory Lecture 23 – Spring 2011 Professor Ronald L. Carter ronc@uta.edu http://www.uta.edu/ronc

2 Project Discussion – Ideal Diode equations ©rlc L23-14Apr20112 Ideal diode, J s expd(V a /(  V t )) –ideality factor,  Recombination, J s,rec exp(V a /(2  V t )) –appears in parallel with ideal term High-level injection, (J s *J KF ) 1/2 exp(V a /(2  V t )) –SPICE model by modulating ideal J s term V a = V ext - J*A*R s = V ext - I diode *R s

3 Project Discussion – Ideal Diode Forward Current Equations ©rlc L23-14Apr20113 Id = area·(Ifwd - Irev) Ifwd = forward current = Inrm·Kinj + Irec·Kgen Inrm = normal current = IS·(eVd/(N·Vt)-1) if: IKF > 0 then: Kinj = (IKF/(IKF+Inrm)) 1/2 else: Kinj = 1 Irec = recombination current = ISR·(eVd/(NR·Vt)-1)

4 ©rlc L23-14Apr20114 Dinj –N~1, rd~N*Vt/iD –rd*Cd = TT = –Cdepl given by CJO, VJ and M Drec –N~2, rd~N*Vt/iD –rd*Cd = ? –Cdepl =? SPICE Diode Model 

5 Derivation Tips ©rlc L23-14Apr20115

6 6

7 7 Ideal 2-terminal MOS capacitor/diode x -x ox 0 SiO 2 silicon substrate V gate V sub conducting gate, area = LW t sub 0 y L

8 ©rlc L23-14Apr20118 Band models (approx. scale) EoEo EcEc EvEv q  ox ~ 0.95 eV metalsilicon dioxidep-type s/c q  m = 4.1 eV for Al EoEo E Fm E Fp EoEo EcEc EvEv E Fi q  s,p q  Si = 4.05eV E g,ox ~ 8 eV

9 ©rlc L23-14Apr20119 Flat band condition (approx. scale) E c,Ox EvEv AlSiO 2 p-Si q(  m -  ox )= 3.15 eV E Fm E Fp EcEc EvEv E Fi q(  ox -  Si )=3.1eV E g,ox ~8eV q  fp = 3.95eV

10 ©rlc L23-14Apr201110 Equivalent circuit for Flat-Band Surface effect analogous to the extr Debye length = L D,extr = [  V t /(qN a )] 1/2 Debye cap, C’ D,extr =  Si /L D,extr Oxide cap, C’ Ox =  Ox /x Ox Net C is the series comb C’ Ox C’ D,extr

11 ©rlc L23-14Apr201111 Accumulation for V gate < V FB SiO 2 p-type Si V gate < V FB V sub = 0 E Ox,x <0 x -x ox 0 t su b holes

12 ©rlc L23-14Apr201112 Accumulation p-Si, V gs < V FB Fig 10.4a*

13 ©rlc L23-14Apr201113 Equivalent circuit for accumulation Accum depth analogous to the accum Debye length = L D,acc = [  V t /(qp s )] 1/2 Accum cap, C’ acc =  Si /L D,acc Oxide cap, C’ Ox =  Ox /x Ox Net C is the series comb C’ Ox C’ acc

14 ©rlc L23-14Apr201114 Depletion for p-Si, V gate > V FB SiO 2 p-type Si V gate > V FB V sub = 0 E Ox,x > 0 x -x ox 0 t su b Acceptors Depl Reg

15 ©rlc L23-14Apr201115 Depletion for p-Si, V gate > V FB Fig 10.4b*

16 ©rlc L23-14Apr201116 References * Semiconductor Physics & Devices, by Donald A. Neamen, Irwin, Chicago, 1997. **Device Electronics for Integrated Circuits, 2nd ed., by Richard S. Muller and Theodore I. Kamins, John Wiley and Sons, New York, 1986


Download ppt "EE 5340 Semiconductor Device Theory Lecture 23 – Spring 2011 Professor Ronald L. Carter"

Similar presentations


Ads by Google