Presentation is loading. Please wait.

Presentation is loading. Please wait.

Electron Energy Levels

Similar presentations


Presentation on theme: "Electron Energy Levels"— Presentation transcript:

1 Electron Energy Levels
Chapter 4: Atoms Elements & Symbols The Periodic Table Atomic Structure Isotopes Electron Energy Levels Periodic Trends

2 Atomic Symbols Each element is assigned a unique symbol
Nitrogen Hydrogen Bromine Nickel Aluminum Each element is assigned a unique symbol 1-2 letters; 1st is capitalized

3 Atomic Symbols Each element is assigned a unique symbol.
aluminum Al potassium K barium Ba nickel Ni carbon C nitrogen N chlorine Cl oxygen O hydrogen H radon Rn helium He titanium Ti gold Au uranium U Each is 1-2 letters and the first is capitalized. Symbol may not match the name - The original name is often of latin or greek origin.

4 Atomic Symbols Sodium (Natrium) Potassium (Kalium) Silver (Argentum)
Lead (Plumbum) Iron (Ferrum) Gold (Aurum) The original name is often of Latin or Greek origin

5 Atomic Symbols Some of the elements whose symbols are derived from other languages Copper (Cuprum from Cyprus) Cu Gold (Aurum Shining Dawn) Au Iron (Ferrum) Fe Lead (Plumbum) Pb Potassium (Kalium) K Silver (Argentum) Ag Mercury (Hydrargyrum Liquid silver) Hg Sodium (Natrium) Na Tin (Stannum) Sn Tungsten (Wolframium) W

6 Atomic Symbols Carbon Calcium Cobalt Copper (Cu) Chlorine Chromium Elements with same starting letter, get second letter added to the symbol

7 Atomic Symbols For elements having the same starting letter, a second letter is added to the symbol. This letter is one of the following letters in the elements name and is always in lower case. Carbon C Californium Cf Calcium Ca Cadmium Cd Cerium Ce Cesium Cs Chlorine Cl Chromium Cr Cobalt Co Curium Cm

8 “Properties of the elements vary in a periodic manner.”
Modern periodic table Mendeleev, 1871 “Properties of the elements vary in a periodic manner.” I A II A III A IV A V A VI A VIIA VIIIA H Li Na Cs Rb K Tl Hg Au Hf La Ba Fr Pt Ir Os Re W Ta He Rn At Po Bi Pb Be Mg Sr Ca Cd Ag Zr Y Pd Rh Ru Tc Mo Nb Ac Ra Zn Cu Ti Sc Ni Co Fe Mn Cr V In Xe I Te Sb Sn Ga Kr Br Se As Ge Al Ar Cl S P Si B Ne F O N C 1 2 3 4 5 6 7 The periodic table helps us understand behavior, reactions properties of the elements. III B IVB V B VIB VIIB VIII B IB IIB Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr

9 A row or period Periods are assigned numbers 1 2 3 4 5 6 7 H He Li Be
C N O F Ne Na Mg Al Si P S Cl Ar K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn Fr Ra Ac Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr

10 Common group names Noble gases Alkali Metals Halogens
Alkaline Earth Metals I A VIIIA Chalcogens H He II A III A IV A V A VI A VIIA Transition Metals Li Be B C N O F Ne Na Mg Al Si P S Cl Ar III B IVB V B VIB VIIB VIII B IB IIB K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr Lanthanides Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn Fr Ra Ac Gd Cm Tb Bk Sm Pu Eu Am Nd U Pm Np Ce Th Pr Pa Yb No Lu Lr Er Fm Tm Md Dy Cf Ho Es Actinides

11 Why do we have those rows on the bottom?
Li Na Cs Rb K La Ba Fr Be Mg Sr Ca Y Ac Ra Sc Tl Hg Au Hf Pt Ir Os Re W Ta He Rn At Po Bi Pb Cd Ag Zr Pd Rh Ru Tc Mo Nb Zn Cu Ti Ni Co Fe Mn Cr V In Xe I Te Sb Sn Ga Kr Br Se As Ge Al Ar Cl S P Si B Ne F O N C This arrangement takes too much space and is hard to read. Gd Cm Tb Bk Sm Pu Eu Am Nd U Pm Np Ce Th Pr Pa Yb No Lu Lr Er Fm Tm Md Dy Cf Ho Es

12 Names & Symbols Know the names & symbols 1 2 3 4 5 6 7 H He Li Be B C
F Ne Na Mg Al Si P S Cl Ar K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn Fr Ra Ac Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr

13 Metals Lustrous, malleable and ductile.
Conductors (heat & electricity) Solids at room temp (except Hg) Lose electrons to non-metals. H He Li Be B C N O F Ne Na Mg Al Si P S Cl Ar K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn Fr Ra Ac Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr

14 Non-metals Gas, liquid, solid (dull, brittle)
H He Li Be At Te As Si B C N O F Ne Na Mg Al P S Cl Ar Gas, liquid, solid (dull, brittle) Poor conductors = Insulators Many are diatomic molecules. Gain e’s from metals Share e’s with other non-metals K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge Se Br Kr Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb I Xe Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po Rn Fr Ra Ac Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr

15 Metaloids Intermediate properties Semi conductors H He Li Be B C N O F
Ne Na Mg Al Si P S Cl Ar K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe Intermediate properties Semi conductors Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn Fr Ra Ac Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr 3 - 11

16 Metals Non-metals Metaloids H He Li Be B C N O F Ne Na Mg Al Si P S Cl
Ar K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn Fr Ra Ac Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr

17 Elemental states at room temperature
H Solid Liquid Gas He Li Be B C N O F Ne Na Mg Al Si P S Cl Ar K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn Fr Ra Ac Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr 3 - 13 Chemeketa Community College: Chemistry for Allied Health

18 Atom - The smallest unit of an element that is still that element.
A model of matter Atom - The smallest unit of an element that is still that element. ie. Aluminum (Al) Molecule -The smallest unit of a pure substance that is still that substance. May contain > 1 atom or element. ie. Water (H2O)

19 protons Structure of the atom & neutrons Nucleus
Small, dense, + charge in the center of an atom. + contains protons + + + + + & neutrons

20 Rutherford’s Gold-Foil Experiment
99% of + particles aimed at gold went straight through. A few were deflected. A few bounced back Conclusion: Atoms are mostly empty space. Atoms have a small, dense nucleus with + charge.

21 - charged particles that surround the nucleus.
Structure of the atom Nucleus (+) Electrons - charged particles that surround the nucleus. Electrons moved around nucleus in orbitals.

22 Structure of the atom The nucleus is a small part of an atom.
If the nucleus was the size of a marble, the atom would fill a football stadium. The nucleus would weigh over 10,000 tons.

23 X - - - - - - The atomic symbol A = Atomic mass (amu)
= # protons + # neutrons - - X A - - Z + + Z = Atomic number = # protons = # electrons - + + + + -

24 X The atomic symbol C = Charge A = Atomic mass = + or - values A C Z #
= # p + # n C = Charge = + or - values X A C Z # Z = Atomic # # p = # e # = Number of atoms in a formula.

25 X - - - - - - 6 The atomic symbol A = Atomic mass 12 Z = Atomic number
= # protons + # neutrons 6 6 - - X 12 - - 6 + + Z = Atomic number = # protons = # electrons - + + + + -

26 C - - - - - - 6 The atomic symbol A = Atomic mass 12 Z = Atomic number
= # protons + # neutrons - - C 12 - - 6 + + Z = Atomic number = # protons = # electrons - + + + + -

27 Na Sodium The atomic symbol A = Atomic mass = p + n = 23 C = Charge 23
= +1 11 12 23 1+ Na 11 # = 1 atom in formula. Z = Atomic # = p = 11 Sodium

28 Why is the atomic weight on the tables not a whole #?
47 Atomic number Name of the element Elemental Symbol Silver Ag 107.87 Atomic mass (weight) Atomic weight = The average, relative mass of an atom in an element.

29 - - - Isotopes of Hydrogen H H H + + +
Isotopes = Atoms of the same element but having different masses. 1 2 1 3 1 H H H - - - + + + Protium 99.99% Tritium Trace % Deuterium 0.01%

30 Average Atomic weight of Hydrogen
Isotopes of Hydrogen Isotopes = Atoms of the same element but having different masses. 1 2 1 3 1 H H H - - - + + + Average Atomic weight of Hydrogen = amu

31 Average Atomic weight of C= 12.011 amu
Isotopes of Carbon 12 13 14 C C C 6 6 6 - - - - - - - - + + + - + + + + + + + + + - - + + + + + + - - - - - - - 98.89% 1.11% Trace % Average Atomic weight of C= amu

32 So falls apart (decays) Giving radioactive particles
Radioactive Isotopes C 6 14 3 1 H H-3 C-14 zzz + - + - Nucleus is unstable So falls apart (decays) Giving radioactive particles

33 Cl Cl Average Atomic Mass 37 35 17 17 75.8% 24.2% (75.8)35 + (24.2)37
+ (24.2)37 = amu 100

34 The atomic symbol & isotopes
Complete the table: Protons Neutrons Electrons 31 15 P 15 16 15 138 56 Ba 56 82 56 238 92 U 92 146 92

35 Atomic Structure Be 4 9 4 5 4 Cl 17 37 17 20 17 Si 14 28 14 14 14
Complete the table: Symbol Atomic # Mass Protons Neutrons Electrons Be 4 9 4 5 4 Cl 17 37 17 20 17 Si 14 28 14 14 14

36 Electronic arrangement
A new layer is added for each row or period in the table.

37 fill layers around nucleus
Electron arrangement 24 12 Mg Electrons fill layers around nucleus Low  High 32 18 8 2 Shells = Energy levels

38 IA IIA 1 H 4 2 He 7 3 Li 9 4 Be 2, 1 2, 2

39 IA IIA IIIA 1 H 11 5 B 7 3 Li 9 4 Be 2, 1 2, 2 2, 3

40 IIIA IVA VA 11 5 B 12 6 C 13 7 N 2, 3 2, 4 2, 5

41 H He Be Li Ne Mg Ar Na 1 4 2 9 7 4 3 IA IIA VIIIA 20 10 2, 1 2, 2 2, 8
24 12 Mg 40 18 Ar 23 11 Na 2, 8, 8 2, 8, 1 2, 8, 2

42 H Be Li B Mg Al Na 1 9 7 4 3 1 Valence electrons Where most chemical
Reactions occur. 1 H 2 3 9 4 Be 7 3 Li 11 5 B 2, 3 2, 1 2, 2 24 12 Mg 27 13 Al 23 11 Na 2, 8, 3 2, 8, 1 2, 8, 2

43 H He Be Li Ne Mg Ar Na Octet Rule 1 4 2 9 4 7 3 1 8 2 20 10 2, 1 2, 2
2, 8 24 12 Mg 40 18 Ar 23 11 Na 2, 8, 8 2, 8, 1 2, 8, 2

44 The octet rule Atoms are most stable if they have a filled or empty outer layer of electrons. Except for H and He, a filled layer contains 8 electrons - an octet. Atoms gain, lose or share electrons to make a filled or empty outer layer. Atoms gain, lose or share electrons based on what is easiest.

45 Rules for electron Placement
An atom is like an inverted pyramid. As you get farther from the nucleus, there is more room for electrons. 1st level holds 2 e’s. 2nd level holds 8 e’s. 3rd level holds 18 e’s. 4th level holds 32 e’s. etc.... 2 e- 8 e- 18 e- 32 e- +

46 Each shell (floor of the Hotel)
Hotel Model Each shell (floor of the Hotel) Has subshells (s,p,d,f) f n = 4 (4th floor) d p s d n = 3 (3rd floor) p s n = 2 (2nd floor) p s n = 1 (1st floor) s +

47 Orbitals Each subshell contains orbitals which can hold a maximum of two electrons p (3) d (5) s (1) f (7)

48 The Aufbau principle Hund’s Rule Electrons fill from the low  high.
fill n = 1 before n = 2 , fill s before p ... n = 4 n = 3 n = 2 Hund’s Rule n = 1 + Electrons don’t share same orbital unless they need to. (i.e. no pairing until each orbital of the set has an electron)

49 Major trends in electron filling
5p 4d 4f 4s 4p 3d 3s 3p 2s 2p 1s Major trends in electron filling Exceptions to Hotel Model: Fill 4s before 3d Fill 5d before 4 f Fill 5s before 4d Fill 6d before 5 f This is why transition metals are assigned as B group elements.

50 Rules for filling the dormitory
In this analogy, each floor is equivalent to an energy level and each room is equivalent to an orbital. The students are the electrons. 1. Students must be placed in the lowest room of the lowest floor that is available. 2. Students may not be paired until each room of a given set is occupied. 3. No room can hold more than 2 students. 4. The 2 students in a room must be in opposite directions 5. There can never be more than 8 students in the highest occupied floor, no matter how many rooms are available.

51 Applying the rules. Solve the following problem:
A student enrolls in the Manganese dormitory (25 student capacity). If she is the last one admitted to the dorm, what floor is she on and which room is she in? Does she have a room mate?

52 Electronic Configuration
Chemists often use a shorthand notation to show where the electrons are in an atom. example: Neon: 20 Ne 1s2 2s2 2p6 10 Phosphorus 31 P 1s2 2s2 2p6 3s2 3p3 15 The periodic table only shows the outer electrons, using the symbol for the inert gas that immediately precedes the element. ex. Phosphorus [Ne] 3s2 3p3

53 *Orbital Diagrams As helpful as electronic configurations are, they only tell you the total number of electrons in each energy levels’ sublevels, not the number in the orbitals themselves. Orbital diagrams take it one step further. Phosphorus 1s s2 2p6 3s2 3p3

54 Electron Configuration
1s __ 2s __ 2p __ __ __ 3s __ 3p __ __ __ 4s __ 3d __ __ __ __ __ 5s __ 4p __ __ __ 4d __ __ __ __ __ 5p __ __ __ 6s __ 5d __ __ __ __ __ 4f __ __ __ __ __ __ __ 7 3 Li 1s22s1

55 Electron Configuration
1s __ 2s __ 2p __ __ __ 3s __ 3p __ __ __ 4s __ 3d __ __ __ __ __ 5s __ 4p __ __ __ 4d __ __ __ __ __ 5p __ __ __ 6s __ 5d __ __ __ __ __ 4f __ __ __ __ __ __ __ 16 8 O 1s22s22p4

56 Electron Configuration
1s __ 2s __ 2p __ __ __ 3s __ 3p __ __ __ 4s __ 3d __ __ __ __ __ 5s __ 4p __ __ __ 4d __ __ __ __ __ 5p __ __ __ 6s __ 5d __ __ __ __ __ 4f __ __ __ __ __ __ __ 30 Zn 1s22s22p63s23p64s23d10 [Ar] 4s23d10 [Ar] 3d104s2

57 Classification by sublevels
p H He d Li Be B C N O F Ne Na Mg Al Si P S Cl Ar K Ca Sc Hf Zr Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr Rb Sr Y Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe Cs Ba Ls Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn Fr Ra Ac Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu f Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr 3 - 25

58 Using the periodic table to find sublevels
1 H Li Na Cs Rb K Ba Fr He Be Mg Sr Ca Ra p 2 2 Tl Rn At Po Bi Pb In Xe I Te Sb Sn Ga Kr Br Se As Ge Al Ar Cl S P Si B Ne F O N C 3 d 3 4 3 Sc Ti V Cr Mn Fe Co Ni Cu Zn 4 5 4 Y Zr Nb Mo Tc Ru Rh Pd Ag Cd 5 5 La Hf Ta W Re Os Ir Pt Au Hg 6 6 6 Ac 7 4 Gd Cm Tb Bk Sm Pu Eu Am Nd U Pm Np Ce Th Pr Pa Yb No Lu Lr Er Fm Tm Md Dy Cf Ho Es f 5

59 Inner vs. valence electrons
Where most reactions occur. Inner electrons Not much happens here under normal conditions.

60 The Continuous Spectrum
When sunlight (white light) is passed thru a prism, a continuous rainbow of colors is observed. There appears to be light of every color in sunlight.

61 Electromagetic Spectrum
The Continuous Spectrum Electromagetic Spectrum Overhead # 26 from chapter 7.

62 The Continuous Spectrum
Actually, most light waves cannot be seen by the human eye. The visible spectrum (violet to red) is a very small percentage of the entire electro- magnetic spectrum. Shorter wave length light is high energy. (Gamma rays, X-rays, UV, etc..) Larger wave length light is low energy. (IR, Microwaves, Radio, etc..)

63 The Discrete Spectrum ! But when light from elements is passed thru a prism, a continuous spectrum is not observed. From the red glow of hydrogen, 4 lines emerged.

64 Excitation of electrons
1 _____ 2 _____ 3 _____ 4 _____ 5 _____ 6 _____ 1 _____ 2 _____ 3 _____ 4 _____ 5 _____ 6 _____ 1 H 410 nm 434 nm 486 nm E 656 nm Add Energy to kick e- to higher level Energy is given back when e- falls back to lower level Some of these discrete Quantities (Quanta) of Energy appear as colors

65 Emission Spectrum of Hydrogen
Explanation of 4 line spectrum of Hydrogen: (10:49min)

66 The Discrete Spectrum ! H Hg Ne

67 First ionization energy
Periodic trends Certain properties of the elements exhibit a gradual change as we go either across a period or down a group. Knowing these trends can help in our understanding of chemical properties - We’ll look briefly at these trends for the representative elements. Valence Eletrons Atomic size First ionization energy Electron affinity Electronegativity

68 Group Numbers & Valence Electrons
Periodic trends Group Numbers & Valence Electrons 1 8 Representative Elements H Li Na Cs Rb K Tl Hg Au Hf Ls Ba Fr Pt Ir Os Re W Ta He Rn At Po Bi Pb Be Mg Sr Ca Cd Ag Zr Y Pd Rh Ru Tc Mo Nb Ac Ra Zn Cu Ti Sc Ni Co Fe Mn Cr V In Xe I Te Sb Sn Ga Kr Br Se As Ge Al Ar Cl S P Si B Ne F O N C Gd Cm Tb Bk Sm Pu Eu Am Nd U Pm Np Ce Th Pr Pa Yb No Lu Lr Er Fm Tm Md Dy Cf Ho Es 2 3 4 5 6 7 4 - 6 12 12

69 H Li Na K H Li Electron-Dot Symbols (Lewis Symbols) Show only Valence
1 H H Show only Valence Electrons 7 3 Li Li Na 23 11 Na K

70 He O F N Si S P Ca H Li C Na K Se Periodic trends Electron-Dot Symbols
1 8 Electron-Dot Symbols H He 2 3 4 5 6 7 C O Li B N F Ne Be Si Al S Cl Ar Mg P Na Kr Ca Ga As Se Br K Ge

71 Periodic trends Atomic Size
Atoms get smaller as you go across a period. Ba Sr Ca Mg Be Tl In Ga Al B Pb Sn Ge Si C Cs Rb K Na Li Bi Sb As P N Te Se S I Br Cl F H Atoms get larger as you go down a group.

72 Periodic trends Atomic Size Atoms get larger as you go down a group.
A new shell is being added which is located further from the nucleus. Atoms get smaller as you go across a period. There are more protons being added to the nucleus as electrons are added to the outer shell. This higher positive charge attracts the electrons more strongly, making the atom smaller. (Air traffic control analogy)

73 First ionization energy
Periodic trends First ionization energy The energy required to remove the first electron from a neutral atom. At I Br Cl Po Te Se S Bi Sb As P Pb Sn Ge Si F O N Tl Na Cs Rb K Ba Mg Sr Ca In Ga Al H Li Be B C 4 - 50 Chemeketa Community College: Chemistry for Allied Health

74 Periodic trends Electron affinity
Energy released when an atom gains an e-. At I Br Cl Po Te Se S Bi Sb As P Pb Sn Ge Si F O N Tl Na Cs Rb K Ba Mg Sr Ca In Ga Al H Li Be B C 4 - 50 Chemeketa Community College: Chemistry for Allied Health

75 Periodic trends Electronegativity
Relative ability of atoms to attract electrons when they form bonds. H Li Be B C N O F Na Mg Al Si P S Cl K Ca Ga Ge As Se Br Rb Sr In Sn Sb Te I Cs Ba Tl Pb Bi Po At Chemeketa Community College: Chemistry for Allied Health 4 - 50

76 Periodic trends Summary of trends. As atomic size decreases
First ionization energy increases. Electrons are harder to remove. Adding more electrons is easier. Summary Metals are larger so tend to lose electrons. Non-metals are smaller so tend to gain electrons.


Download ppt "Electron Energy Levels"

Similar presentations


Ads by Google